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Abstract

In this paper, we develop a comprehensive framework for interpreting
negative probabilities via balance matrices. By decomposing a quasi-
probability matrix into a proper joint probability matrix and a balance
matrix—whose row and column sums vanish—we preserve the marginal
distributions while isolating the non-classical (negative) components. Our
approach leverages iterative proportional fitting to implement this de-
composition and explores the algebraic properties of balance matrices,
including ring isomorphisms and the behavior of Moore-Penrose inverses.
Beyond establishing a rigorous mathematical foundation, we discuss the
potential of these methods to address challenges in quantum mechan-
ics, game design, and other disciplines where non-standard probabilities
emerge.
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1 Introduction

Negative probabilities have long presented a conceptual challenge, appearing in
diverse contexts from quantum mechanics to economic modeling. In traditional
probability theory, all probabilities are nonnegative; however, certain phenom-
ena—such as interference effects in quantum systems or subtle biases in complex
systems—can give rise to quantities that behave like probabilities yet take on
negative values.



This paper introduces balance matrices as a powerful tool to reinterpret
negative probabilities. By decomposing a given quasi-probability matrix ) into
the sum

Q=P+B,

where P is a standard joint probability matrix and B is a balance matrix (with
all row and column sums equal to zero), we preserve the observable marginals
while isolating the contributions responsible for negativity. In doing so, we not
only reconcile non-classical probabilities with conventional theory but also pro-
vide an algebraic framework complete with ring isomorphisms, pseudoinverse
formulations, and effective computational techniques such as iterative propor-
tional fitting (IPF).

Our work develops both the theoretical underpinnings and practical imple-
mentations of this approach. By connecting abstract algebraic properties with
applied algorithms, we aim to offer a versatile method for researchers confronting
negative probabilities in a variety of settings.

2 Definitions

In this section we summarize the key definitions introduced throughout the
paper. For clarity, we list them here:

1. Joint Probability Matrix. Let X and Y be discrete random variables
with outcome spaces

{$1,$2,.--,$m} and {ylay%"'ayn}a
respectively. The joint probability matrix P(X,Y) is defined by

P(x1,y1) P(ri,y2) - Px1,yn)

f)(xz,yl) fj($2,y2) T })($27yn)
P(X,Y) =

P(xmayl) P(mmva) P(xmvyn)

Each entry represents the probability that X = z; and Y = y;.

2. Normalization. A probability matrix is normalized if the sum of all its

entries equals one:
m n
D> Play) =1
i=1 j=1

3. Non-Negativity. A probability matrix satisfies non-negativity if every
entry is greater than or equal to zero:

P(x;,y;) >0 forall 4,j.

4. Marginal Distributions. The marginal distribution of X (or Y) is
obtained by summing the joint probabilities over the outcomes of Y (or
X):

P(X =ux;) = ZP(mi,yj) and P(Y =y;) = ZP(wi,yj).

j=1 i=1



10.

11.

12.

13.

14.

Conditional Distributions. Given P(X = ;) > 0, the conditional
probability of Y given X = z; is defined by

P(xi’ yj)

P(Y:yj|X:$i):P(X:xi).

Independence. Two random variables X and Y are independent if

P(z;,y;) = P(X =2;) P(Y =y;) foralli,j.

Balance Matrix. A balance matrix B is a matrix (not necessarily square)
whose rows and columns each sum to zero:

ZBij =0 and ZBij =0.
j %

Joint Quasi-Probability Matrix. Given a balance matrix B and a
joint probability matrix P, the joint quasi-probability matrix @ is defined
as

Q=P+B.

Unlike P, the entries of @) may fall outside the interval [0,1] while still
summing to one.

Iterative Proportional Fitting (IPF). IPF is an algorithm used to
adjust the entries of a matrix so that its row and column sums match
given target margins. In our context, it is applied to scale an initial
matrix to have the same marginals as a given quasi-probability matrix.

Semantic Space. A semantic space is defined on a finite set 2 together
with a kernel

k:QxQ—[-1,1],
which is positive semidefinite, satisfies k(a, ) = 1 for all & € Q, and has
the property that k(«, 8) = 1 if and only if o = S.

Balance Space. A balance space is a triple (£, X, B) where:

e () is an outcome set.
e Y is a o-algebra over ).
e B:3%¥ — Ris a g-additive function with B(£2) = 0.

Moore-Penrose Inverse. Given a matrix (or operator) X, its Moore-
Penrose inverse X T is the unique matrix satisfying the four Penrose condi-
tions. In our work, it is used to define pseudoinverses for balance matrices.

Quasi-Probability. A quasi-probability is a generalization of a prob-
ability distribution that allows for negative values. The decomposition
Q@ = P + B serves to separate the classical (probability) part P from the
non-classical (balance) part B.

Cholesky Decomposition. For a positive semidefinite matrix, the Cholesky

decomposition factors it as a product of a lower triangular matrix and its
transpose. This technique is used to obtain the mapping ¢ in the con-
struction of a semantic space.



3 Joint Quasi-Probability Matrix

Suppose we have a balance matriz B, which is a matrix (not necessarily square)
whose row sums and column sums are all zero, i.e.,

ZBU =0 for all 4, ZB”- =0 for all j.
j i

Let P be a joint probability matrix, so that

ZPU =1 and F;; >0 foralli,j.
i,

We then define the joint quasi-probability matriz @ by
Q=B+ P
The matrix @ exhibits the following properties:

1. Normalization: Since B has zero sum over all its entries (because its
rows and columns sum to zero), the total sum of @ is preserved:

> Qi =1
1,7

2. Marginal Preservation: The marginal distributions of ) are identical
to those of P, since for any fixed row or column the contribution from B
is zero.

3. Quasi-Probability Nature: Although every entry of P is nonnegative
and bounded between 0 and 1, the balance matrix B may include negative
values or values exceeding 1. Thus, some entries of () may lie outside the
interval [0, 1], justifying the designation as a quasi-probability matrix.

4. Dimensional Flexibility: Neither B nor P need be square; accordingly,
(@ may be rectangular, accommodating random variables with differing
numbers of outcomes.

4 Balance Matrices and Their Properties

In this section we summarize the key theorems and properties for matrices
whose row and column sums are zero (i.e., balance matrices), covering both the
square and rectangular cases. For brevity, only the statements are given. The
interested reader can find the original proofs and statements in [I], from which
we have copied the theorems here:

4.1 Square Balance Matrices

Theorem 4.1 (Bijection). There ezists a bijection

¢: M, — Spi1, X JXJ,,



where
Jn=1[1In] — 1],

and Sp41 denotes the set of (n+1) x (n+ 1) matrices with all row and column
sums equal to zero.

Corollary 4.2 (Rank Preservation). If X = J*X.J,, then X and X have the
same rank.

Corollary 4.3 (Self-Adjointness Preservation). We have X = X* if and only
if X = X*.

Theorem 4.4 (Ring Isomorphism). Let x denote standard matriz multiplica-
tion and define the twisted product o on M, by

XoY =XK.,Y, with K, =J,J.
Then ¢ is an isomorphism between the rings (Sp+1,+, X) and (M, +,0).

Theorem 4.5 (Identity Element). The ring (S,+1,+, X) has a unique multi-
plicative identity given by

_ T 1
ﬁb(Kn 1) = Jo K, 1Jn =Iny1 — ml(n+1)x(n+1)>

where 1,1 1)x (nt1) denotes the (n+ 1) x (n+ 1) matriz of all ones.

Theorem 4.6 (Moore-Penrose Inverse for Full-Rank Square Balance Matrices).
For any rank n matriz X € S,41 with X = J; X Jp,, the unique Moore-Penrose
inverse of X 1is

Xt =T K XK.
Corollary 4.7. For any rank n matrix Xe Snt1,

1

711(n+1) x(n+1)-

XXt =X"X =T K, =Lyt — —

4.2 Rectangular Balance Matrices

For matrices with zero row and column sums that are not necessarily square,
one may represent them as

v . T*

X =J,XJy,

where X is an m X n matrix.

Theorem 4.8 (Moore-Penrose Inverse for Rectangular Balance Matrices). For
X = J} X J,, the Moore-Penrose inverse is given by

Xt =T (kD (k5 X k) Tk T,
where K, = JpJE = knk®, and K,, = J,J = k,k*.

Theorem 4.9 (Row-Only and Column-Only Zero Sum Cases). 1. IfX=XJ,
with X left-invertible, then

Xt =T KXt
2. If X = J*X with X right-invertible, then
Xt =XTK;1J,.



4.3 Balance Matrices with Extra Zero Rows or Columns

Let a be a fixed index set (with m entries, m < n) specifying the positions
where rows and/or columns are identically zero. Denote by S&,; the set of
(n+1) x (n+ 1) matrices with all row and column sums zero and with zeros in
the rows and columns indexed by a.

Theorem 4.10 (Isomorphism for Matrices with Extra Zeros). There exists an
isomorphism

(b : (Mn—ma -+, O) - (Si-o—la -+, X)> X = J:;«LanJm,av

where Jy, a is defined by inserting zero columns (and rows) at the positions
indicated by a, and the product o is defined by X oY = XK,,Y with K,, =
']m/aa‘];tz,a'

Theorem 4.11 (Moore-Penrose Inverse for Matrices with Extra Zeros). For a
matriz X = J, , X Jpm.a of rank m, the Moore-Penrose inverse is

Xt =T KA XK

m,a m

Theorem 4.12 (Projection Property). For X = I b X Jm.a of rank m,
XX =5, K e

Theorem 4.13 (Invariance under Projection). Let M be any matriz with m
rows, and let X = J}, X Jm a be a rank m square matriz. If M = J5, .M, then

XtXM =M.
Theorem 4.14 (Range of the Projection Operator). The vectors of the form

M = Jy, oM constitute an m-dimensional subspace that spans the range of the
projection operator Xt X.

5 Iterative Proportional Fitting and Quasi-Probability
Matrices
In this section we describe the iterative proportional fitting (IPF) algorithm and

its role in decomposing a quasi-probability matrix ) into a joint probability
matrix P and a balance matrix B such that

Q=P+B.

The balance matrix B has the property that all its row and column sums are
zero, ensuring that the marginal distributions of @) are identical to those of P.

5.1 Iterative Proportional Fitting (IPF)

Iterative proportional fitting is an algorithm used to adjust the entries of an
m X n matrix so that its row and column sums match given target margins.
Suppose we are given an initial matrix

A= (ay), 1<i<m, 1<j<n,

and target row sums Rq,..., R, and column sums Cq,...,C,. The IPF algo-
rithm proceeds as follows:



1. Initialization: Choose a starting matrix A(®) (typically with all positive
entries).

2. Row Adjustment: For each row i, compute the current row sum

*) _ N~ ()
5 *Z%v
=1

R .
5

i

and update every entry in that row by multiplying by

(k+1/2) (k)
a; = aj; EGR

3. Column Adjustment: For each column j, compute the new column sum

m
(k+1/2) _ (k+1/2)
T =D a7
i=1
and update every entry in that column by multiplying by %
J
O
gk (k+1/2) J

ij ij Tj(k+1/2) :

4. Tteration: Repeat the row and column adjustments until the row and
column sums converge to the targets.

Example: Let

o [11
o=l

with desired row sums R; = 4 and Ry = 6 and desired column sums C; = Cy =

Row adjustment:

e Row 1 sum =1+ 1 = 2. Multiply row 1 by 5 = 2 to obtain [2,2].

N[ NI

e Row 2 sum = 1+ 1 = 2. Multiply row 2 by 2 = 3 to obtain [3, 3].

Thus, the intermediate matrix is

(1/2) _ |2 2
A [3 3]

Column adjustment: Both columns already sum to 2 + 3 = 5, so no further

scaling is required. The resulting matrix satisfies the desired margins:

2 2
1 —
4 _[3 3]
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5.2 Decomposition of Quasi-Probability Matrices

A matrix @ is called a quasi-probability matriz if:

2.0< Z Qi; <1 for every column j,
i=1

3.0

IN

1=
n

Z Qi; <1 for every row ¢.

j=1

Given such a @, we wish to decompose it as
Q=P+B,

where P is a joint probability matrix (with nonnegative entries summing to 1)
and B is a balance matrix (with zero row and column sums).
One approach is as follows:

1. Let
M = max|g;;].
i,j
Define the matrix

A= (a;;) with a;; = |(]1\l41‘,

so that a;; € [0, 1].

2. Apply the IPF algorithm to A using the target row and column sums
taken from Q. Let the resulting matrix be A and set

P.= A.
3. Define the balance matrix as

B:=Q-P.

Since the balance matrix B satisfies

ZBM = Z(qij — pi;) = (row sum of ) — (row sum of P) =0,
J

J

(and similarly for column sums), the decomposition is valid.
Below is some SageMath code that implements the above method:

# Define the iterative proportional fitting (IPF) algorithm.
def ipf (A, row_targets, col_targets, tol=1e-6, max_iter=1000):
A = matrix(RR, A) # ensure we work with real numbers
m, n = A.nrows(), A.ncols ()
for it in range(max_iter):

# Row adjustment
for i in range(m):



current_row_sum = sum(A[i,j] for j in range(n))

if current_row_sum != O:

factor = row_targets[i] / current_row_sum
else:

factor =1

for j in range(n):
A[i,j] *= factor
# Column adjustment
for j in range(n):

current_col_sum = sum(A[i,j] for i in range(m))
if current_col_sum != O:

factor = col_targets[j] / current_col_sum
else:

factor = 1

for i in range(m):
A[i,j] *= factor

# Check convergence

row_diffs = [abs(sum(A[i,j] for j in range(n)) -
row_targets[i]) for i in range(m)]

col_diffs = [abs(sum(A[i,j] for i in range(m)) -
col_targets[j]) for j in range(mn)]

if max(row_diffs + col_diffs) < tol:
break

return A

# Function to decompose a quasi-probability matriz { into a joint
probability matrixz P and a balance matriz B.

def decompose_qpm(Q, tol=le-6, max_iter=1000):
Q = matrix(RR, Q)

m, n = Q.nrows(), Q.ncols ()
# Compute target rTow and column sums from (.
row_targets = [sum(Q[i,j] for j in range(n)) for i in range(m)]
col_targets = [sum(Q[i,j] for i in range(m)) for j in range(n)]
# Check mnormalization.
total = sum(row_targets)
if abs(total - 1) > tol:
print ("Warning: Q is not normalized; total sum =", total)
# Determine the mazimum absolute entry in (.
M = max(abs(Q[i,j]) for i in range(m) for j in range(n))
if M == O0:

raise ValueError("Matrix 0 is zero!")
# Construct matriz A with entries a_ij = [q_ij5//M.
A = Q.apply_map(lambda x: abs(x)/M)
# Apply IPF to A with targets from Q.

P = ipf (A, row_targets, col_targets, tol=tol, max_iter=max_iter
)

# Define the balance matrixz B = { - P.

B=Q -P

return P, B

# Exzample usage:
# Define a quasi-probability matriz @.
Q = matrix(RR, [[0.2, 0.1],

[-0.1, 0.8]1)
print ("Quasi-Probability Matrix Q:")
print (Q)

# Decompose @ into P (joint probadbility matriz) and B (balance
matriz) .

P, B = decompose_qpm(Q)

print(”Joint Probability Matrix P:")

print (P)

10




65| print ( )

66| print (B)

67

cs| # Verify that § = P + B.

60| print ( )
70| print (P + B)

The above code first defines the IPF procedure, then uses it to adjust the
absolute value matrix derived from @) so that the resulting matrix P has the
same row and column sums as . Finally, the balance matrix B = @ — P is com-
puted. Note that the decomposition is not unique; alternative decompositions
may exist.

6 Half-Coin Example of G. Székely

Let o
Q’n:(_l)n_l\/§ Z;l’ n=0,1,2,...,
where
(2n) 1
Cp,=—-2 n=20,1,2,..., and C_;=——.

n+1’ 2

Then, as has been shown in [2], we have

an =1 and Z|qn| =2

n>0 n>0

Define

,_|QM
Pn =

5

Then, we have

0<p,<1 and anzl.
n>0

Now, set
bn ‘= d4n — Pn-

Then, the balance property holds:

D= -y pa=1-1=0.

n>0 n>0 n>0

7 Balance Spaces
In the previous example, set

B:=(2={0,1,2,...}, £ =2% B),
with

B(A):=) b, for AcX.
neA

This gives rise to a balance space defined by:

11



e Y is a o-algebra over €.

e B is a g-additive function, i.e., B : % — R.

e B(Q)=0.

A quasi-probability space Q is defined as

Q=(2%,Q)

such that:

e X is a o-algebra over (2.

e () is a o-additive function @ : ¥ — R.

e Q) =1.

Hence, in the previous example we have shown how to decompose the quasi-
probability function defined by ¢, into a balance function and a probability
function:

B({n}) := by = g¢u — pp = Q({n}) — P({n}),
with all three functions @, B, and P defined on the same (Q,X) tuple. It
would be interesting to see if this decomposition can be done for a general
quasi-probability space, analogous to the decomposition discussed in the matrix
section.

8 Applications in Slot Game Design

The decomposition ) = B + P offers a useful tool for game design in slot
games. A game designer, who may not be a mathematician, might devise a
mechanism in which the advertised “probabilities” ¢;; sum to 1 yet sometimes
take on negative values, hence the usual theorems of probability theory can not
be applied in this setting and the game rules must be changed.

For the mathematician responsible for the probabilistic analysis, the ap-
proach is to decompose @) via iterative proportional fitting into a balance ma-
trix B and a true probability matrix P (i.e., @ = B+ P). The resulting matrix
P = [p;;] is then proposed as the “corrected probabilities” for the game. This
method ensures that () and P have the same row and column sums, preserving
the marginal distributions while providing a mathematically consistent set of
probabilities for the game design.

8.1 Example: Decomposition in Game Design

Below is an example illustrating the method.
Consider the following 2 x 2 quasi-probability matrix Q:

0= 0.3000  0.1000
~ \—0.0500 0.6500)
The row sums of @) are:

0.3000 4 0.1000 = 0.4000, and — 0.0500 + 0.6500 = 0.6000.

12



The column sums of Q) are:
0.3000 + (—0.0500) = 0.2500, and 0.1000 4 0.6500 = 0.7500.
The maximum absolute value in Q) is
M = 0.6500.

We then construct a matrix A by scaling the absolute values of @ by M:
A= M _ 0.4615 0.1538 .
M 0.0769 1.0000
The target marginals (row and column sums) are the same as those of Q:
e Row targets: [0.4000, 0.6000]

e Column targets: [0.2500, 0.7500]

By applying the iterative proportional fitting (IPF) algorithm to A with
these targets, we obtain the corrected probability matrix P:

b <0.2299 0.1701) .
0.0201 0.5799
The row sums of P are approximately:
0.2299 4+ 0.1701 ~ 0.4000, and 0.0201 4 0.5799 ~ 0.6000,
and the column sums of P are:

0.2299 4 0.0201 = 0.2500, and 0.1701 4 0.5799 = 0.7500.

Finally, the balance matrix B is computed as:

0.3000 — 0.2299  0.1000 — 0.1701 0.0701  —0.0701
B=Q-P= - :

—0.0500 — 0.0201  0.6500 — 0.5799 —0.0701  0.0701
The row sums and column sums of B are essentially zero (up to numerical
rounding), confirming that B is indeed a balance matrix.
Explanation of the Method:

1. Initial Quasi-Probability Matrix (): The matrix @) is specified with
entries that sum to 1 but may include negative values.

2. Scaling to Form Matrix A: We compute the maximum absolute value

M = 0.65 in @ and form the matrix A whose entries are given by %
This scales all entries into the interval [0, 1].

3. Setting Target Marginals: The target row and column sums (i.e.,
0.4000 and 0.6000 for rows; 0.2500 and 0.7500 for columns) are determined
from @. These marginals remain preserved throughout the decomposition.

13



4. Tterative Proportional Fitting (IPF): The IPF algorithm is applied
to A to adjust its entries until the resulting matrix P matches the target
marginals. This yields a corrected probability matrix P with all nonneg-
ative entries.

5. Computing the Balance Matrix B: Finally, the balance matrix is
obtained as B = Q — P. By construction, B has row and column sums
equal to zero, capturing the hidden bias inherent in the original quasi-
probability matrix Q).

This decomposition @ = B + P is particularly useful in game design. For
example, a slot game designer may initially specify a quasi-probability matrix @
that appears to offer fair odds (since the marginals match expected values), even
though some entries are negative. The IPF-based decomposition then produces
a corrected probability matrix P that can be used for rigorous analysis, while the
balance matrix B reveals the underlying bias ensuring the game’s profitability.

9 Uniqueness of the Decomposition

One natural way to achieve a unique decomposition of a quasi-probability matrix
Q into a proper probability matrix P and a balance matrix B (i.e., @ = P+ B)
is to select P as the unique solution of the following optimization problem:

.
min [P~ Qllr,

where || - || p denotes the Frobenius norm and P is the set of all joint probability
matrices having the same row and column sums as ). In other words, P is the
transportation polytope defined by the constraints

E pij = r; for each row i, and E pij = ¢; for each column j,
J i

r; = Zqij and c¢; = Zqij'
J i

with

Since the function

FP) =P =QlE = (piy — ai5)°
,J
is strictly convex on R™*"™ (its Hessian is 2I), its restriction to the convex set P
remains strictly convex. Consequently, there is a unique minimizer P* of f(P)
over P. Once this unique probability matrix P* is obtained, the balance matrix
is given by
B=Q - P".

This construction ensures that B automatically has zero row and column
sums (since @@ and P* share the same marginals), and the decomposition @ =
B + P* is unique.

Thus, minimizing the Frobenius norm ||P — Q|| subject to P having the
same row and column sums as ) and nonnegative entries indeed ensures a
unique decomposition.

14



9.1 Theoretical Method and Python Implementation for
Unique Decomposition

One natural way to achieve a unique decomposition of a quasi-probability matrix
Q into a proper probability matrix P and a balance matrix B (i.e. @ = P+ B)
is to choose P as the unique solution to the following optimization problem:

. 12
min || P — Q|

where || - || denotes the Frobenius norm and
P={PeR™" : Py>0,3 piy=ri, ) pij=¢
J i

is the transportation polytope defined by the constraints

ry = Z gij foreachrow i, and c¢; = Z gij for each column j.
J i

Since the objective function

F(P) =P = Q% = (pij — 1is)

.3

is strictly convex, its restriction to the convex set P is strictly convex. Therefore,
there exists a unique minimizer P* that we denote by P*. The balance matrix
is then given by
B=Q - P~

This choice of P* ensures that B automatically satisfies the zero-sum conditions
on its rows and columns.

A practical way to compute P* is by using quadratic programming. Below
is an example implementation in Python using the cvxpy library.

Python Code Implementation:

import cvxpy as cp
import numpy as np

# Define the quasi-probability matriz

5/Q = np.array([[0.3, 0.1],

[-0.05, 0.6511)
m, n = Q.shape
# Compute the target marginals from @

Q.sum(axis=1) # row sums: [0.4, 0.6]
Q.sum(axis=0) # column sums: [0.25, 0.75]

O
nwon

# Define the wvariable P (the corrected probability matriz)

5| P = cp.Variable ((m, n))

7| # Define the objective: minimize the Frobenius norm squared of (P -

Q)

objective = cp.Minimize(cp.sum_squares(P - Q))

15




N}

[SEN)

"B I R CR VRN

# Define the constratints: nonnegativity and prescribed row/column

sums

constraints = [P >= 0,
cp.sum(P, axis=1) == r,
cp.sum (P, axis=0) == c]

# Formulate and solve the problem
prob = cp.Problem(objective, constraints)
prob.solve ()

# Extract the unique corrected probability matrixz P*
P_star = P.value
B = Q - P_star # the balance matriz

print( )
print (P_star)
print ( )

;| print (B)

Explanation:

1. We start with the quasi-probability matrix @, whose entries sum to 1 but
may include negative values.

2. The target row sums 7; and column sums c¢; are computed directly from

Q.

3. The optimization problem is set up to minimize the Frobenius norm ||P —
Q||% subject to P being a joint probability matrix—that is, P must be
nonnegative and have the same row and column sums as Q.

4. Since the problem is strictly convex, the solver finds the unique minimizer
P* (denoted here as P_star).

5. Finally, the balance matrix B is calculated as the difference @Q — P*.

This approach guarantees a unique decomposition Q = B + P* and can be
a valuable tool in applications such as game design, where one might need to
correct quasi-probabilities into a proper probability distribution.

10 Semantic spaces on the same sample set

The goal of this section is given a finite probability space to construct a semantic
space on the same set.

Let (©2, %, P) be a probability space. For v € Q with p, := P({v}) # 0, we
define the random variable

1, ifw=r,

X (w) =
7 {O, otherwise.
Then, since these random variables are Bernoulli distributed, we have

E(X;) =p, and Var(X;) = p,(1 —py).
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We standardize this random variable by setting
X5 — E(X3) XD -y

\/Var X*) - V(1

For «, 8 € (), we define the function

Xy =

k(a, B) = B(XoXp).

10.1 Calculation of E(X,X3)

First, we write

l{a}(w) — Pa
pa(l - pa)

Lipy(w) —pg

Xa W)= )
) pa(l—pg)

;o Xplw) =

thus obtaining:

E(XoXs)=E
(XaXo) <\/pa(1 — Pa)ps(l — pp)

(1{a} = pa) (15 _pﬁ)> .

By expanding the numerator, we have:

E(XoXg) = E(LiayLipy) —PaB(Lis)) —psE (L)) +PaPs
\/Pa (1~ pa)ps(l — ps)

Since
Do, if a=f,

0, ifa#p,
and E(l{a}) = po as well as E(l{ﬁ}) = pg, the numerator simplifies to

B(lgaylsy) = P({a} n{B}) = {

0a,8 P — PaPB — PaPB + PaPs = 0o, Pa — PalB;

where d, 3 denotes the Kronecker delta (i.e., o3 = 1 when o = § and 0
otherwise).
Thus, we obtain

504 BPa — PaPp
B(XoXs) = ’ .
VPa (1 = pa)ps(l —ps)

10.2 Piecewise Representation

This corresponds to the following case distinction:

2 —
\/ Pa pa(l ) :pagi pa; :].7 ifOé:Bv
oz o )Po — Pa Pa — Pa
E(XoXg) = VP _1; 21;; p
= if a # 8.

\/pa — Pa p,@(l _pﬂ)
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10.3 Summary

For a, 8 € Q, we have:

00,8 Pa — PalB
E(X,Xg) = o .
“ VPa(1=pa)ps(1 —ps)

This is a formula in which only p, and pg appear on the right-hand side.

10.4 Proof that (2, k) is a Semantic Space

We define for o, 5 € 2
k(a, B) = E(XaX3),

where for each v € 2 the random variable
Ly —p
X’y _ {} Y
py(1=py)
is defined, with p, = P({v}) # 0. Note that X, has been standardized, i.e., we

have
E(Xy)=0 and |X,|= \/E(X?/) =1.

We now show the three required properties.

10.4.1 k is Positive Semidefinite

Let ay,...,a, be a finite subset of 2 and let ¢y, ...,c, € R be arbitrary coeffi-
cients. Then,

n n
E CiCj k:(ai,aj) = E CiCy <Xai7Xaj>~
i,j=1 i,j=1
Since the inner product is linear and symmetric, we can write:

2

Z CiCy <XaiaXaj> = <Z CiXam Canj> = ZciXﬂti Z 0.
ij=1 i=1 j=1 i=1
Thus, k is positive semidefinite.
10.4.2 —1<k(a,B) <1
Since X, and Xz are normalized (|| X,| = ||Xg| = 1), it follows from the

Cauchy—Schwarz inequality that
k(e, B)| = [(Xa, Xp)| < [ Xall[[ Xp] = 1.
Therefore, for all a, 8 € Q

-1 <k(a,B) <1.
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10.4.3 Characterization: k(o,5) =1 < a=p

First, note that for each o € 2
k(a,a) = B(X3) = [ Xa|* = 1.

Now, let o and 8 be two distinct elements of €, i.e., & # 5. Since X, and
Xp are defined as

a — ; - ’
\/poc(l_poc) \/pﬁ(l_pﬂ)

we observe that the indicator functions 1;,3(w) and 1ygy(w) never simulta-
neously take the value 1 when a # f; that is, 1,31y = 0 almost surely.
Consequently,

E(l{a} 1{5}) = P({a} n {ﬁ}) = O

Furthermore, E(l{a}) = po and E(l{ﬁ}) = pg. Thus, by expanding the numer-
ator we obtain:

E[(l{a} — Pa) (L —pﬁ)} = 0= PaPp — PaPg + PaPp = —PabPp-

Hence,
—PaPp
k(a,B) = .
(@) VPa(l = pa)ps(1 —pp)

Since pqo,ps > 0 and p,,ps < 1, the fraction is strictly less than 1 (indeed, it is
negative). Therefore,

Ela,8) =1 <— a=0g.

This shows that k(«, 8) = 1 occurs if and only if a = S.

10.4.4 Conclusion

We have shown:
e k is positive semidefinite,
o —1<k(a,p) <1forall a,f €,
e k(a, ) =11if and only if « = 3.

Hence, (€, k) is a semantic space.

10.5 Example: Binomial Distribution with n =5 and p = %

We consider the probability space given by the binomial distribution with pa-
rameters n = 5 and p = . The probabilities for the individual outcomes

2
k=0,1,2,3,4,5 are
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For this space, we construct the semantic space by considering, for each
v €{0,1,2,3,4,5}, the standardized Bernoulli random variable
PO C o}
¥ bl
Vry(1—py)
and by defining the function
6& a — Pa
k(a, ) = E (XoXp) = bPa_Pabb
Va1 = pa)ps(l - ps)
where d,, 3 denotes the Kronecker delta.
The corresponding Gram matrix K is then given by:
1 1 1 1 1
1 —57g V465 —55 V1705 —55 V1705 —575v/465 —37
1 5 5 5 1
575 V465 1 —59V33 55V 33 — 55 — 57 V465
1 5 5 5 1
- —gg V1705 —55v33 1 - —55V33  —3z V1705
1
— 37 V1705  —25v/33 - 1 5V33  —z7 V1705
745 V/465 -2 - 2/33 - 2/33 1 — 725V/465
- —g5V465  —5 V1705 — V1705 —5h51/465 1

This matrix gives the inner products k(a, 8) = E(X,Xg) in the semantic space.

11 Balanced extension of a finite semantic space

A finite semantic space (2,k) is called balanced if the corresponding Gram
matrix is a balance matrix, that is, if one of the following equivalent conditions

holds:
(1) > k(a,b) =0,
a,beQ2
(2) YaeQ: > k(a,b)=0.

beQ
Let (€, k) be a finite semantic space, i.e., k: Q x Q@ — [—1,1] is a positive
semidefinite kernel with

k(a,a) =1 and k(a,b)=1 < a=0b, Va,beq.

Since the Gram matrix is positive semidefinite, one may apply the Cholesky
decomposition to obtain an injective mapping

¢: 1 —R™

such that

k(a,b) = (¢(a), (b)), Va,be Q.

We now distinguish two cases.
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Case A: Z k(a,b) =0
a,beQ)
Define

Then it follows that

0= kla,b) = (3 0(a), Y- 0(b)) = (w,w) = Juw]%.

a,be acQ) beQ)
Hence, w = 0 (the zero vector). In particular, for every a € Q we have
" k(a,b) = (9(a), w) = 0.
beD

Thus, the matrix
B = (k(a7b))a,b€Q

is a balance matriz.
We now define, according to Born’s rule, the joint probabilities by

k(z,y)?

> k(ab)?

a,beQ2

Plz,y) =

Then, P is a joint-probability matrix and it follows that
Q=B+ P

is a quasi-probability matrix.

Case B: w #0
Suppose that

w = Z ¢(a) # 0.
In order to enforce balance, we extend the original space as follows. First, define

A= {a € Q| Jexactly one b € Q such that — ¢(a) = ¢(b) }.

Clearly, A must be a proper subset of €2, since otherwise for every a € ) we
would have —¢(a) = ¢(b) for some b € 2, which would imply

w=>Y ¢(a)=0,

contradicting the assumption w # 0.
Now set

M:=Q\A.

For each a € M, define a new element a* and set

M*:={a"|aeM}.
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We then define the extended space as the disjoint union
Q" =QUM".
On Q* we define the mapping ¢*: Q* — R™ by

o(x), T € A,
o™ (x) == ¢ o(z), r e M,
—¢(a), xT=a* € M*, where a € M.

Since for every a € M both ¢(a) and —¢(a) occur in ¥, it immediately follows

that
Yo @)=Y [6a) — é(a)] = 0.
e MUM* aeM
Furthermore, one sees that
> ¢*(z) =0.
TEA

It then follows that

Now=Y @+ > ¢ @)=0

TeN* TEA reEMUM*

We define the extended kernel k* on Q* by

E*(z,y) := (¢*(x), 0" (v)), Va,ye€ Q"

Then, for all z,y € Q* = AU M U M*, the extended kernel k*(x, y) is given
by
k(z,y), ifx,yeAUM,

E*(z,y) = —k(z,y), ifxr€ AUM and y € M*,
k(xz,y), ifxzyeM*.

Here, k(z,y) is the original kernel on (2.

This formulation allows one to compute k*(z,y) directly in terms of k(z,y)
without the need for performing a Cholesky decomposition—a practical advan-
tage in applications.

It is clear that (2%, k*) is a semantic space, and for z,y € Q C Q* we already
have

K (z,y)* = k(z,y)*.

We can now, analogously to Case A, apply Born’s rule by defining, for x,y € Q*,
the probabilities

k*(z,y)?

ST K (ab)?

a,beQ*

Plz,y) =

and setting
B:=K* Q:=B+P.
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11.1 Summary

We have shown that for every finite semantic space (£2, k) there exists an bal-
anced semantic space (2, k*) with the properties:

1. Q C O,
2. k*(x,y)? = k(z,y)? for all z,y € Q,
3. Z E*(x,y) = 0.

z,yeN*

12 Extension of a finite semantic space via a new
element

Let (€, P) be a finite probability space with P(w) > 0 for all w € Q. For subsets
A, B C (), define

P(ANB)

P(AUB)’

i.e. the Jaccard kernel, which is known to be positive semidefinite. Hence,

k(A,B) :=

k2% x 22— [0,1].
Moreover, we have
k(A,B)=1 ifand onlyif A= DB,

since P(w) > 0 for all w € Q. Thus, (2%, k) forms a semantic space (with the
subsets of ) as the objects) that is not balanced.
We now extend this space by adding a new element {t} to {2, i.e.,

Q" =QuU{t}.
Define the mapping ¢* on subsets A* C Q* by setting
. a p(A*) ift ¢ A
9" (A7) = :
—p(A) if A* = AU {t}.

Then we define
k*(A*, B*) := (¢*(A"), ¢"(B")).
It follows that (2%, k*) is a balanced semantic space.
Another way to perform this construction is by using the balanced matrix

1 -1
5= (4 )
and the Kronecker product ®. Define

K*:=B®K,

. (K -K
w= (e W)
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where K is the Gram matrix of k(A, B). Here the elements of 2% are arranged
so that first all subsets A C Q) appear, and then, in the same order, all sets of
the form A U {t}.

This extension from (29, k) to (22, k*) satisfies:

1. For all A, B € 2%, we have k*(A, B)? = k(A, B)?,

2. Z k*(A,B) =0, and

A,Be29"
3. The original o-algebra ¥ := 29 is a subset of the extended o-algebra
¥ =2,
12.1 Connection to ”Negative Probabilities”

We can recover the probabilities from the modified kernel £* defined above on
the extended space as follows. For any subset A* C Q*, define

B(AY) = k*(A*, Q).

In particular, for subsets that originally belonged to 2, i.e. if A* = A C Q, we

have
B(A*) = k*(A,Q) = k(A,Q) = P(4),

and for subsets of the form A* = AU {t} we have
B(A*) = —k(A,Q) = — P(A).

For any subcollection S C ¥* = 29*, define

B(S):= Y B(A").

AxeS
Then it holds that
B(Z*)= Y B(A")=0.
Axexx
Thus, ($*,2%, B) forms a balance space with the following properties:

1. X C ¥,
2. For every A € X, B(A) = P(A).

13 The Dedekind-Frobenius matrix

Let (22,29, f) be a finite balanced space such that 2 = G is a finite group.
Let G ={g1,...,9n} be a finite group, and let

f:G =R

be a real-valued zero-sum function on G, i.e.

> flg) =0

geaG
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Then we will show, how to construct a balance matrix from this space:

(Remark: In the literature, the ”balance” property seems to be called ”zero-
sum function”. Examples of such functions are non-trivial real-valued characters
x of finite abelian groups G.)

We define the Dedekind—Frobenius f-valued matriz

My = (mivj)lg,jgn’
by the rule
_ —1
mi; = f(gigj )
We wish to prove that M is balanced, meaning that the sum of its entries in
each row and in each column is zero.

13.1 Row Sums

Fix an index j. Then the sum of the entries in the j-th column is

Zmi,j = Zf(gigjl)
i=1 i=1

Because the map g — gg;1 is a bijection (permutation) on G, the set { g; g;l

i=1,...,n} is simply a re-labeling of all elements of G. Hence
> flaigrh) = > fn
i=1 heaG

since f is a zero-sum function on G. This shows that each column of M; sums
to zero.

13.2 Column Sums

A similar argument applies when we fix an index i and sum down the i-th row.

Specifically,
Zmi,j = Zf(gigfl)
j=1 j=1

Again, as g; runs through all elements of G, g;l also runs through all elements
of G (just in a different order), so { g; gj_1 :j=1,...,n} =G. Thus

> Haigi') = D> f(h
j=1

heG

Therefore, each row of My also sums to zero.

13.3 Remark

Since both the row sums and the column sums of My vanish, My is a balanced
matrix. In symbols:

imm‘ =0 and imi’j = 0, forallzi,j.
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Hence My belongs to the class of matrices whose row and column sums are all
Zero.

14 Example of ”negative probabilities”: Coin
Transitions in a Wallet

In a wallet Uy, there are four coin types:
e 1 cent and 2 cent coins,
e 1 euro and 2 euro coins.

Their distribution is as follows:

1 2 | Total

Uy = Cent |1 5 6
Euro | 5 25 30

Total | 6 30 36

We simultaneously remove (-) and add (+) the following number of coins
from Uj:

1 2| Total

Cent | -1 2 1

v = Euro| 2 3 5
Total | 1 5 6

Thus, the wallet U, contains the following number of coins:

1 2 | Total
Uy = Cent |0 7 7
BEuro | 7 28 35
Total | 7 35 42
The probabilities of drawing a specific coin type (with replacement) are given
by:
In U;:
1 2 | Total
T 35 T
P oo | B
3636 6
Total % % 1

During the removal and addition process:

1 2| Total
Cent | -1 2 I
P = Euro 26 S S
66 6
Total % % 1
In Us:
1 2 | Total
Cent | 0 L L
P = Euro | % %—% g
42 42 6
Total % % 1

DO
(@)



It holds that
P, +dP = P, orequivalently dP = P, — Py,

and
Uy +dU = U,  or equivalently dU = Us — Uyj.

Here, P, and P, are standard probability matrices, whereas dP is a quasi-
probability matrix. So we see here in this example how ”negative probabilities”
can occur naturally although the marginals probabilities are > 0.

14.1 Discussion and Interpretation of the Example

Below is an informal, step-by-step interpretation of the coin-wallet example and
why it illustrates “negative probabilities” (or quasi-probabilities) in a simple
setting.

Overview of the Example We have a wallet U; containing four types of
coins:

e Cent coins: 1 cent and 2 cent.

e Euro coins: 1 euro and 2 euro.

Their initial distribution (i.e., how many of each coin type the wallet holds)
is given by a 2 x 2 table, broken down by “Cent” vs. “Euro” along one axis and
“1” vs. “2” along the other:

1 2 | Total

Cent |1 5 6

UL = EBuo|5 25| 30
Total | 6 30 36

e Row-wise, we see 6 cent coins total (1 +5 = 6) and 30 euro coins total
(5425 = 30).

e Column-wise, we see 6 coins of denomination “1” (1 cent+5euro = 6) and
30 coins of denomination “2” (5 cent + 25 euro = 30).

e In total, there are 36 coins in U;.

Next, we simultaneously remove some coins from U; (these will appear as
negative entries) and add other coins to Uy (these appear as positive entries).
This is shown in a change matrix dU:

1 2| Total

Cent | -1 2 1

W= guol| 2 3 5
Total 5 6

e For the cent coins in the “1” column, —1 means we remove one 1l-cent
coin.

e For the cent coins in the “2” column, +2 means we add two 2-cent coins.
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e Similarly, we add two 1-euro coins and three 2-euro coins.

After this simultaneous removal and addition, the new wallet is denoted Us.
It is simply given by Us = Uy + dU:

1 2 | Total

Cent |0 7 7

U2 = Euo|7 28| 35
Total | 7 35 42

e For instance, 1 + (—1) = 0 cent coins of type “1” remain.
e 25+ 3 = 28 euro coins of type “2,” etc.
Probabilities of Drawing Each Coin Type In U;:

Since U; has 36 coins total, the probability matrix P; indicates the chance of
drawing each type if we pick a coin at random:

> reflect the distribution of coins with denomi-

1 2 | Total
Cent | o ~ 1
P = ¥ o8 §
Euro | 35 %5 2
Total | &+ 2 1
o The “Cent” row sums to § (i.e., o).
o The “Euro” row sums to 2 (i.e., 52).
5
6

e The column sums % and
nations “1” and “2.”

During the Removal and Addition (dP):
While we move from U; to Us, we can consider a “difference” in probabilities:

1 2 | Total
Cent | =L 2 L

_ 6
apP = Euro % % %
Total % % 1

Notice that the upper-left entry is — %. This negative value is not interpretable as
a probability in the classical sense; instead, it represents a quasi-probability—an
intermediate value that captures the process of removing probability mass from
that category.

In Us:
The final probability matrix P, (for the 42 coins in Us) is:

1 2 | Total

Cent | 0 T L

P = Euo = % %
Total | &+ 2 1

The fractions reflect the new composition of coin types in Us while maintaining
consistent marginal totals.
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Key Point: Negative (Quasi-)Probabilities

1. Relation P; +dP = Ps:
The matrix dP (the “difference” in probabilities) can have negative entries
even though P; and P; are valid probability matrices. This shows that the
intermediate process of removing and adding coins leads to a temporary
negative entry in dP.

2. Interpretation:

e P represents the probabilities of drawing each coin type before any
changes.

e P, represents the probabilities after the coin changes.

e dP captures the change from P; to P,. Because the process in-
volves literally “taking away” coins (removing probability mass) and
“adding” coins, some entries in dP become negative.

3. Relevance:
This example demonstrates how negative (or quasi-)probabilities can arise
in practical scenarios when modeling transitions. Even though the ini-
tial and final states (P; and P») are standard probability distributions,
the intermediate difference dP may include negative values. Such quasi-
probabilities can be useful for intermediate calculations in areas like quan-
tum mechanics, game design, or financial models.

Bottom Line
e Before the change: We have a valid probability matrix P;.
o After the change: We have another valid probability matrix Ps.

e Difference: The matrix dP = P,— P; can be viewed as a quasi-probability
matrix. Although it may contain negative entries, its row and column sums
are balanced so that the transition from P; to P, is correctly captured.

This coin-wallet example thus provides a tangible illustration of how negative
or quasi-probabilities can naturally appear when modeling a transition (such as
removing and adding coins) via a single matrix operation, even though the initial
and final distributions are valid (nonnegative) probability distributions.

14.2 Extended Polya urn model

In the extended Pélya urn model the urn (analogous to the wallet) contains
objects that can be classified by two attributes—say, color (with m distinct
colors) and size (with n distinct sizes). The initial composition of the urn is
given by the matrix

U= (“ij)1gigm, 1<5<n’

with total number of objects

T1 = ZZU”

i=1 j=1
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Thus, the probability of drawing an object of color i and size j is

.o Ui
Pl(laj) = ?f

Simultaneous Addition and Removal:
We now allow for the possibility of simultaneously removing some objects (repre-
sented by negative entries) and adding others (positive entries). Let the change
be represented by the delta matrix
dU = (dis)

1<i<m, 1<j<n’

The new composition is then

Us = U +dU,
with total number of objects
Ty=)_ > (u+di).
i=1 j=1

The updated probability of drawing an object from category (i, j) is

S Ui+
P2 (27]) - T2 .

Preservation of Marginal Probabilities:
To ensure that the marginal probabilities (for example, the overall probability
for each color or for each size) remain the same after the transition, the change
matrix dU must be chosen so that the net effect on the row and column sums
of U is proportional. Let

r, = E Ugj and Cj = E Usj

j=1 i=1
be the row and column totals of U;. After the change, if the new row and
column totals are

n m
T‘Z/‘ = Z(uij + dlj) and C;» = Z(UU + dw‘),
j=1 =1
then to preserve the marginal probabilities it is sufficient to have

/

T T .
-t = — for each 1,
T, T

and similarly for the column sums.
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14.2.1 Conditions for the Appearance of Negative Probabilities

If we only add objects (Addition), then d;; > 0 and consequently dP;; > 0,
meaning that the probability of drawing objects from those categories increases.
If we only remove objects (Removal), then d;; < 0, but the total number
of objects also decreases, meaning 7' < 0. As a result, the probability change is
given by
dij
T b
which remains positive (dP;; > 0) because both d;; and T' are negative, leading
to an overall increase in relative probability.
The effect of negative probabilities only arises when we simultaneously
remove and add objects. In this case:

P, =

e Some entries of d;; will be negative (representing removed objects),

e But hopefully, the total sum T remains positive, ensuring that the prob-
ability difference matrix dP contains some negative entries (dP;; < 0 in
some places).

This observation aligns with the phenomenon seen in quantum mechanics
(QM), where a state that involves both "removal” and ”addition” is a mixture
of the "pure states” of only adding and only removing. In QM, negative
probability-like effects emerge in interference phenomena, where the transition
between states involves both positive and negative contributions to probability
amplitudes. Similarly, in our model, negative quasi-probabilities appear when
an intermediate state is formed by a combination of adding and re-
moving objects, rather than from pure addition or pure removal alone.

14.3 Possible applications of the extended Pdlya urn model

The extended Pdlya urn model generalizes the classical urn model by allowing
simultaneous addition and removal of objects while preserving the marginal
probabilities of the original urn distribution. This framework could have several
practical applications in areas where the overall relative proportions of categories
must be preserved despite fluctuations in absolute counts. For example:

e Inventory Management: In retail, products are sold (removed) and
restocked (added) simultaneously. Using an extended Pdlya urn model
ensures that the product mix (marginal probabilities) remains constant
even as absolute quantities vary.

¢ Population Dynamics: In biological systems, individuals in different
subpopulations (e.g., age groups or species) may be born and die concur-
rently, but the overall structure (relative proportions) is maintained.

¢ Evolutionary Game Theory: Agents might switch strategies (moving
from one category to another) while the overall distribution of strategies
remains in equilibrium.

e Marketing and Consumer Behavior: Consumers may shift prefer-
ences among products without altering the overall market share distribu-
tion.
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Discussion of Applications: These examples illustrate how the extended
Pélya urn model can be applied to systems in which objects (or agents) are si-
multaneously added and removed while maintaining fixed marginal proportions.
Such scenarios are prevalent in:

¢ Inventory Management: Stock levels are adjusted by simultaneously
selling (removing) and restocking (adding) items while preserving the
product mix.

¢ Population Dynamics: In ecosystems or cell populations, births and
deaths occur concurrently, yet the relative proportions of subpopulations
remain stable.

e Evolutionary Game Theory: Agents may switch strategies (i.e., move
from one category to another) in a manner that keeps the overall distri-
bution of strategies unchanged.

e Consumer Behavior: Shifts in consumer preferences can be modeled by
simultaneous transitions between product categories, while overall market
shares are maintained.

In each case, the extended Pélya urn model provides a framework for under-
standing how internal changes (captured by the quasi-joint-probability matrix
dP) can occur without affecting the observable marginal distributions. This
insight could be helpful for both theoretical analyses and practical applications
where the maintenance of certain proportions is important.

In summary, the extended Pdlya urn model offers a powerful tool for modeling
systems with simultaneous additions and removals, ensuring that key marginal
probabilities are preserved. This characteristic makes it highly relevant in di-
verse fields ranging from inventory control and biological population studies to
economic and social systems.

15 Applications of the extension with a Balanced
Semantic Space

The extension of a finite semantic space to a balanced semantic space (i.e.
extending 2 to 2* so that the extended kernel k* satisfies

> k(xy) =0,
T,y

while preserving the squared values on the original set) offers several intriguing
applications across different fields. We briefly outline some of these potential
applications below:

1. Natural Language Processing and Distributional Seman-
tics

In many models of word meaning, words are represented as vectors in a high-
dimensional space and semantic similarity is measured via inner products. How-
ever, such spaces may possess a nonzero mean that can bias similarity measures.
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The extension provides a principled way to “center” the semantic space by ex-
tending the vocabulary so that the overall representation is balanced. This
can lead to more accurate similarity computations, improved clustering, and
enhanced performance in tasks such as analogical reasoning and semantic role
labeling.

2. Kernel Methods in Machine Learning

Kernel-based techniques (e.g., kernel principal component analysis, spectral
clustering) often benefit from centering the kernel matrix. A balanced semantic
space naturally induces a centered kernel, ensuring that the sum of all pairwise
similarities is zero. The extension method, preserves key pairwise relationships
while eliminating systemic bias. This can improve the performance and inter-
pretability of dimensionality reduction and clustering algorithms.

4. Graph and Network Analysis

In many network and graph-based applications, nodes (e.g., individuals in so-
cial networks or entities in relational databases) are embedded into a semantic
space for tasks such as community detection or link prediction. If the under-
lying similarity (or kernel) matrix is biased, it can obscure the true structure
of the network. An extension to a balanced semantic space removes this bias,
yielding a representation where the overall interaction is neutral. This can lead
to improved detection of communities or clusters and a clearer interpretation of
network dynamics.

5. Financial Modeling and Risk Management

Financial models often rely on probability measures to assess risk and model
asset returns. In practice, observed data may induce quasi-probability distribu-
tions that are biased. By applying the extension to create a balanced semantic
space, one can obtain a corrected representation that is centered (i.e., has zero
net bias). Such balanced representations are beneficial in risk-neutral pricing,
portfolio optimization, and in the identification of systematic deviations that
could lead to market anomalies.

6. Signal Processing and Time Series Analysis

In signal processing, it is common to remove the DC (zero-frequency) compo-
nent of a signal so that the residual signal is centered around zero. Similarly,
when constructing feature spaces or embedding signals into a semantic space,
a balanced representation (one with a zero mean) can improve filtering, com-
pression, and noise reduction techniques. The extension method can be used to
adjust the feature space so that it becomes balanced, thus ensuring that further
analysis is not influenced by an overall bias.

7. Data Visualization and Dimensionality Reduction

When visualizing high-dimensional data, a balanced embedding can improve
interpretability. For example, in techniques such as multidimensional scaling
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(MDS) or t-SNE, a balanced semantic space ensures that the origin corresponds
to a natural center of the data, allowing for better separation of clusters and
more meaningful visualization of relationships.

In summary, the extension with a balanced semantic space is not only a
mathematically elegant solution to the problem of nonzero biases in quasi-
probability and kernel representations but also has the potential to impact di-
verse fields—from natural language processing and machine learning to quantum
physics and financial modeling. Each application benefits from the elimination
of systemic biases, leading to improved performance and interpretability in both
theoretical analyses and practical implementations.

16 Speculative Applications

Although our investigation has focused on the mathematical structure underly-
ing negative probabilities and balance matrices, the methods developed herein
have intriguing potential applications beyond pure mathematics.

Quantum Physics

In quantum mechanics, quasi-probability distributions—such as the Wigner
function—are used to describe quantum states. These distributions often take
on negative values, reflecting the non-classical behavior of quantum systems.
The balance matrix framework could offer a new perspective on these quasi-
probabilities by decomposing them into a conventional probability part and a
bias term. Such an approach might clarify the role of interference effects and en-
tanglement in quantum measurements and contribute to a better understanding
of quantum-to-classical transitions.

Financial Modeling and Risk Management

Financial markets are rife with uncertainties and asymmetric risks, and classi-
cal probability models sometimes fail to capture extreme events (the so-called
"black swan” phenomena). By applying balance matrices, one might model
market probabilities in a way that incorporates hidden biases or risk factors.
For instance, a quasi-probability model of asset returns could be decomposed to
isolate the systematic deviations that lead to market crashes or bubbles, thus
providing a novel tool for risk assessment and management.

Cognitive Science and Decision Theory

Human decision-making often deviates from the predictions of classical probabil-
ity theory. In psychology and behavioral economics, observed choices sometimes
reflect negative probabilities or biases that are not easily captured by standard
models. By decomposing these quasi-probabilities, researchers could identify the
underlying biases in perception or judgment. This may lead to improved mod-
els of human cognition, allowing for better predictions of behavior in situations
involving uncertainty.
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Artificial Intelligence and Machine Learning

In domains where systems must make decisions under uncertain or conflicting
information, such as in autonomous agents or recommendation systems, incor-
porating a balance matrix approach could enhance robustness. Decomposing
uncertain data into a traditional probability component and an adjustment term
may allow AT systems to better manage ambiguous inputs, leading to improved
decision-making and performance in complex environments.

Other Interdisciplinary Areas

Beyond the fields mentioned above, the principles of balance matrices and quasi-
probabilities may find applications in any domain where uncertainty and hidden
biases play a role. This includes areas such as epidemiology (modeling the spread
of diseases with imperfect data), social sciences (analyzing opinion dynamics),
and even art and design (where probabilistic models can inform generative pro-
cesses).

17 Conclusion

In conclusion, we have presented a comprehensive framework for interpret-
ing negative probabilities using balance matrices. By decomposing a quasi-
probability matrix @ into the sum @ = P + B, where P is a proper joint
probability matrix and B is a balance matrix with zero row and column sums,
our approach preserves key marginal properties while isolating the non-classical
components. The theoretical development—including results on ring isomor-
phisms, Moore-Penrose inverses, and iterative proportional fitting—provides a
robust mathematical foundation for this decomposition.

Moreover, the versatility of this framework is evident in its potential ap-
plications beyond mathematics. Whether it is in quantum physics, financial
risk management, cognitive science, or artificial intelligence, the balance matrix
method opens new avenues for interpreting and managing uncertainties that
classical probability theory alone cannot adequately address.

Future work may further explore these interdisciplinary applications, refine
the computational algorithms, and extend the theory to infinite-dimensional
spaces. In doing so, the balance matrix approach promises to bridge the gap

between abstract mathematical theory and practical problems in a wide array
of fields.
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