
1 A Twofold Bernoulli Experiment with Complementary Out-
comes in C

Consider a Bernoulli experiment in which the outcome X can take two values:

X = 0 with complex probability a and X = 1 with complex probability b = 1− a.

We perform this experiment twice independently. Thus, the probabilities for the first experiment are

Q(X1 = 0) = a, Q(X1 = 1) = b,

and for the second experiment they are

Q(X2 = 0) = a, Q(X2 = 1) = b.

The Question. Under what conditions on a and b does the twofold experiment yield, with probability
one, complementary outcomes, i.e.

Q(X2 = 1−X1) = 1 ?

In other words, we require that the probability of obtaining equal outcomes (denoted by p) and the
probability of obtaining complementary outcomes (denoted by q) satisfy

p+ q = 1 with q = 1.

Tree Diagram Analysis. For two independent trials, the probability that the two outcomes are the
same is given by

p = Q(X1 = 0) ·Q(X2 = 0) +Q(X1 = 1) ·Q(X2 = 1) = a2 + b2,

while the probability that the outcomes differ is

q = Q(X1 = 0) ·Q(X2 = 1) +Q(X1 = 1) ·Q(X2 = 0) = 2ab.

Since a+ b = 1, it follows that
a2 + b2 = 1− 2ab = 1− q.

Thus, the two probabilities are related by

p = 1− q and q = 2ab.

Finding a and b via the Quadratic Formula. If we view a and b as the two roots of a quadratic
polynomial, then the polynomial with roots a and b is

t2 − (a+ b)t+ ab = t2 − t+
q

2
= 0.

The quadratic formula then gives:

t =
1±

√
1− 2q

2
.

We now distinguish several cases:

� If 1 − 2q > 0 (i.e. q < 1
2 ), then

√
1− 2q ∈ R and both a and b are real numbers. In particular, if

q = 0 we have a = 1 and b = 0, which yields X1 = X2 = 0 with certainty.

� If 1− 2q = 0 (i.e. q = 1
2 ), then a = b = 1

2 .

� If 1− 2q < 0 (i.e. q > 1
2 ), then

√
1− 2q = i

√
2q − 1 is purely imaginary. In this case,

a =
1

2
+
i
√
2q − 1

2
, b =

1

2
− i

√
2q − 1

2
.
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The Special Case q = 1. To have Q(X2 = 1 −X1) = q = 1, we must have p = 0. From the above
relation, this occurs when

a2 + b2 = 0.

In the complex case, this forces

a =
1

2
+
i

2
, b =

1

2
− i

2
.

Note that in this situation a+ b = 1 and

|a| = |b| =

√(
1

2

)2

+

(
1

2

)2

=
1√
2
.

Moreover, the phase difference between a and b is 90◦. Thus, if one were to perform the experiment
with these complex probabilities, the outcome would be perfectly anti-correlated; that is, if the first
experiment yields X1, then the second experiment yields X2 = 1−X1 with probability 1.

Interpretation. In the classical real-valued setting (q = 0), one can choose a = 1 and b = 0 so that
both experiments yield the same outcome (X1 = X2 = 0). However, to achieve perfect anti-correlation
(X2 = 1−X1 with certainty), no such real numbers a and b exist. Instead, we must extend our probability
assignments into the complex numbers. In this case, the choices

a =
1

2
+
i

2
and b =

1

2
− i

2

yield q = 1, which formally corresponds to the quantum mechanical scenario of the EPR experiment
with two entangled particles.

Summary: A twofold Bernoulli experiment with complex probabilities a and b = 1− a yields perfectly
complementary outcomes (i.e. X2 = 1−X1 with probability 1) if and only if

a =
1

2
+
i

2
and b =

1

2
− i

2
.

This result highlights the need to extend the usual real-valued probabilities into the complex domain
when modeling phenomena such as quantum entanglement.

2 Markov Chain Model for an ”Entangled” Coin

We consider two distinct cases based on the parameter q ∈ [0, 1]:

1. Case 0 ≤ q ≤ 1
2 : Ordinary Bernoulli Experiment

In this range, the quantity

a =
1 +

√
1− 2q

2

is a real number between 0 and 1 (specifically, 0 ≤ a ≤ 1
2 if q ≤ 1

2 ). Consequently, we have a
standard Bernoulli trial with probability a for Heads and b = 1− a for Tails. By the Law of Large
Numbers, if one performs N independent tosses, then approximately a fraction a of the outcomes
will be Heads and a fraction b will be Tails.

2. Case 1
2 < q ≤ 1: Self-Entangled Coin with Complex Probabilities

Once q > 1
2 , the values of

a =
1± i

√
2q − 1

2
, b = 1− a

become complex (since
√
1− 2q is purely imaginary). In this scenario, the coin exhibits “self-

entangled” behavior in the sense that, if Heads occurs on one toss, then with probability q > 1
2 the

next outcome is forced to be Tails (and conversely, Tails flips to Heads). Such a perfect complement
flip is not observed in a usual physical coin.
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To model this complementary-flip behavior in a classical (non-quantum) way, one may employ a
two-state Markov chain with states H (Heads) and T (Tails). The transition matrix is

P =

(
1− q q
q 1− q

)
,

so that with probability q the coin changes state on the next toss (H → T , T → H), and with
probability 1− q it remains in the same state.

A simple calculation shows that the stationary distribution of this Markov chain is

π =
(
1
2 ,

1
2

)
.

Hence, by the Law of Large Numbers for Markov chains, one still obtains on average half Heads and
half Tails over many tosses. However, the coin is “self-entangled” in the sense that it systematically
prefers to switch (when q > 1

2 ) more than a fair coin would.

Thus, while the long-run frequencies might look similar (e.g. 50% Heads, 50% Tails), the dynam-
ics and the underlying probabilities can be very different when q > 1

2 , requiring complex-valued
probability amplitudes to formally describe the perfect anti-correlation scenario (q = 1).

3 A QuantumMechanical Experiment with Perfect Anti-Correlation

A classic example in quantum mechanics that exhibits the desired behavior is the Einstein-Podolsky-
Rosen (EPR) experiment performed with two spin- 12 particles in the singlet state. In this experiment,
the two particles are prepared in the entangled state

|ψ−⟩ = 1√
2

(
|↑ ↓⟩ − |↓ ↑⟩

)
,

where |↑⟩ and |↓⟩ represent the two possible outcomes of a spin measurement along a chosen axis. We
associate these outcomes with the values X = 0 (say, ↑) and X = 1 (say, ↓), respectively.

Assume that we perform the following two independent measurements on the two particles along the
same axis:

� The first measurement yields X1.

� The second measurement is performed on the other particle.

Due to the perfect anti-correlation of the singlet state, if the first measurement yields

X1 = 0,

then the second measurement will yield
X2 = 1,

with 100% probability. Conversely, if
X1 = 1,

then necessarily
X2 = 0.

Thus, when we repeat the experiment on a large ensemble of such pairs, we observe that the outcome
of the second measurement is always the complement of the outcome of the first measurement:

X2 = 1−X1 (with 100% probability).

This behavior illustrates the entangled nature of the quantum state and the non-classical correlations
that arise from it.
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