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1 Fish, Imaginary Coins, and Complex Probabili-

ties

What do �sh, imaginary coins, and complex probabilities have in common? In
this section, we tell an illustrative story that humorously connects these three
seemingly di�erent concepts.

Imagine the complex plane as a vast, mysterious ocean. In this ocean, n �sh
swim, represented by complex numbers z1, z2, . . . , zn ∈ C, such that:

z1 + z2 + · · ·+ zn = 1.

We cast a one-dimensional net into this ocean � the net stretches from 0 = 0 + 0i
to 1 = 1 + 0i. This net is intended to catch �sh, but it has a large hole at the
point 0. Every �sh that is located there immediately escapes and is never caught.

Our hand is �rmly positioned at 1 (that is, at 1 + 0i). With our hand, we can
also reach outside the net to catch a �sh directly with bare hands. The probability
of catching a particular �sh zk is to be proportional to the distance of the �sh from
the resting hand. Concretely, we de�ne

P (zk) =
|zk|

|zk|+ |1− zk|
.

The complementary probability of not catching the selected �sh is then

1− P (zk) = P (1− zk).

We now distinguish between two cases:
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First Case: All �sh are inside the net, i.e. each zk lies in the interval [0, 1] (as
a real number). In this case, it is guaranteed that we will catch a �sh, because

1 = P (1) = P
( n∑

k=1

zk

)
=

n∑
k=1

P (zk) = P (Ω).

This means that with certainty a �sh will be caught � although the individual
catch probability depends on the �sh's position. For example, if

z1 =
1

3
and z2 =

2

3
,

then

P (z1) =
1

3
and P (z2) =

2

3
.

If we target �sh z1, we catch it with probability 1
3
; if that attempt fails, then the

other �sh will be caught by the net with probability 2
3
.

Second Case: Some �sh swim outside the net, i.e. there are �sh zk /∈ [0, 1]
(that is, complex numbers with nonvanishing imaginary part). In this case, it may
happen that the catch probability of a �sh is so low that we might not catch any
�sh at all. For example, let

z1 = 1, z2 = i, z3 = −i.

Then
z1 + z2 + z3 = 1.

Calculating, we have:

P (z1) =
|1|

|1|+ |1− 1|
=

1

1 + 0
= 1,

while

P (z2) = P (z3) =
|i|

|i|+ |1± i|
=

1

1 +
√
2
≈ 0.414.

This means that if we target �sh z2, the probability of catching it is about 41.4%,
whereas with approximately 58.6% probability the �sh escapes � our hand reaches
outside the net and catches nothing.

In the �rst case, where all �sh are inside the net, it is thus certain that we will
catch a �sh, while in the second case, catching a �sh becomes uncertain.
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Now, we extend this story to in�nitely many �sh � and thereby transition to
complex or imaginary coins. As described by Gábor Székely, we wish to allow not
only �half-coins� but also complex-valued coins.

Let x be a complex number with positive real part. The complex coin is de�ned
by its generating function:(

z + 1

2

)x

=
∞∑
n=0

1

2x

(
x

n

)
zn =

∞∑
n=0

zn z
n,

and by setting z = 1 we obtain:

∞∑
n=0

zn = 1.

Here,

zn =
1

2x

(
x

n

)
,

and for truly complex x one may write

zn = exp(−x log 2)
Γ(x+ 1)

Γ(n+ 1)Γ(x− n+ 1)
.

Depending on the choice of x, there are now potentially in�nitely many �sh
z0, z1, z2, . . . in the ocean that together sum to 1.

We interpret this as follows:

� If x is chosen to be a natural number, then all zi lie in the interval [0, 1]. In
that case,

zn = P (zn),

i.e. the probability P (zn) can be understood as the classical probability of
obtaining exactly n heads in x tosses of a fair coin.

� If, for example, x =
√
−1 is chosen, then the zn are complex. In this case,

we toss the imaginary coin and interpret P (zn) as the probability that in
x = i tosses we obtain exactly n heads � where �heads� is understood in
a metaphorical sense. With probability P (zn) we catch that �sh, and with
probability 1−P (zn) we do not. We say that we toss the imaginary coin x = i
times and aim for a speci�c number n (i.e. we want to catch a speci�c �sh zn);
we are hoping to get exactly n heads, meaning we succeed in catching that
particular �sh zn with probability P (zn), and fail with probability 1−P (zn).

In the �rst case, we can say: the imaginary coin lands on the ground and
shows n heads. In the second case, we can say: the imaginary coin is still in
the air and has not yet landed to reveal the number of heads.
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Thus, the story shows:

Fish, imaginary coins, and complex probabilities all share a
system of sums and geometric ratios. Fish in an ocean (the com-
plex plane) are described by their positions zk, and a net stretched
from 0 to 1 catches the �sh depending on their distance from our hand
at 1. The catch probability is given by

P (zk) =
|zk|

|zk|+ |1− zk|
.

If the �sh is directly inside the net, this corresponds to the classical
probability; if it is outside, the catch probability decreases. Similarly,
we can imagine an imaginary coin whose generating function produces
in�nitely many �sh (outcomes) � demonstrating that complex proba-
bilities lead to a sort of �probability distribution� when we extend the
conventional, real viewpoint.

This story humorously connects the world of �sh, imaginary coins, and complex
probabilities into a consistent concept that extends classical probability theory and
opens up new perspectives.
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2 Introduction

We consider the function

P : C → [0, 1], P (z) :=
|z|

|z|+ |1− z|
,

where z = a+b i in the complex plane (with |z| =
√
a2 + b2) lies. In this document,

we prove some fundamental properties of this function, including the complemen-
tary probability P (1− z) = 1− P (z) as well as P (0) = 0 and P (1) = 1. We then
discuss under which conditions a measure-theoretic probability concept for �nite
sums of complex numbers can be obtained. In particular, we show that genuine
σ-additivity is achieved only in the real case zi ≥ 0.

3 Basic Properties of P

3.1 Complementary Probability

Theorem 1 (Complementary Probability). For every z ∈ C with z ̸= 1 it holds
that

P (1− z) = 1 − P (z).

Proof. Let z ∈ C. We have

P (1− z) =
| 1− z |

| 1− z |+ | 1− (1− z) |
=

|1− z|
|1− z|+ |z|

.

The denominator is |z|+ |1− z|. Hence,

P (1− z) =
|1− z|

|z|+ |1− z|
= 1− |z|

|z|+ |1− z|
= 1− P (z).

3.2 Boundary Values P (0) and P (1)

Theorem 2 (Boundary Cases: Impossible (0) and Certain (1) Events).

P (z) = 0 ⇐⇒ z = 0, P (z) = 1 ⇐⇒ z = 1.

Proof. � For z = 0:

P (0) =
| 0 |

|0|+ | 1− 0 |
=

0

0 + 1
= 0.
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� For z = 1:

P (1) =
|1|

|1|+ | 1− 1 |
=

1

1 + 0
= 1.

Similarly, the converse holds.

3.3 Real Special Case and Linear Behavior

Theorem 3 (Real Embedding). If z = p ∈ [0, 1] ⊂ R, then P (z) = p. In other
words,

P (p) =
p

p+ (1− p)
= p.

Proof. In the real case z = p ∈ R with 0 ≤ p ≤ 1 we have |p| = p and |1−p| = 1−p.
Therefore,

P (p) =
p

p+ (1− p)
=

p

1
= p.

Remark 1. This shows that in the real special case, P (z) degenerates exactly to
a Bernoulli probability p. That is, we obtain classical probabilistic behavior with
P (0) = 0 and P (1) = 1 as well as P (x+y) = P (x)+P (y) if x, y ≥ 0 and x+y ≤ 1.

4 Finite Sums and σ-Additivity

Suppose we have �nitely many complex numbers z1, . . . , zn ∈ C with

z1 + z2 + · · ·+ zn = 1.

De�ne
Ω = {z1, . . . , zn} and for any subset A ⊆ Ω

set
Q(A) := P

(∑
z∈A

z
)
.

The question is whether Q can be regarded as a probability measure on the power
set of Ω, in particular, whether σ-additivity (or �nite additivity) holds:

Q(A ∪B)
?
= Q(A) +Q(B) for A ∩B = ∅.
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4.1 Why in the General Complex Case Additivity Fails

In general, for complex zi (or even negative real zi) we have

P (x+ y) ̸= P (x) + P (y).

Indeed, P is not linear:

P (x+ y) =
|x+ y|

|x+ y|+ |1− (x+ y)|
,

while

P (x) + P (y) =
|x|

|x|+ |1− x|
+

|y|
|y|+ |1− y|

.

These sums do not, in general, coincide. Hence, the desired relation Q(A ∪ B) =
Q(A) +Q(B) for disjoint A,B does not hold.

4.2 Characterization of σ-Additivity

Theorem 4 (Additivity Only in the Real, Nonnegative Case). The function

Q(A) = P
(∑
z∈A

z
)

is �nitely additive (and thus a probability measure on Ω) if and only if all zi are
real and nonnegative and

∑
i zi = 1. In this case, we usually write zi = pi ∈ [0, 1]

and obtain
Q(A) =

∑
z∈A

z (classical probability theory).

Proof. (a) Wishful Necessity: I do not have a proof for this, but the idea is:
Assume that Q(A) is �nitely additive, i.e.,

Q(A ∪B) = Q(A) +Q(B) for disjoint A,B.

In particular, for singleton sets {zi} and {zj} with i ̸= j,

Q({zi, zj}) = Q({zi}) +Q({zj}),

so that
P (zi + zj) = P (zi) + P (zj).

Let x := zi and y := zj. In order for such additivity to hold, we must have

P (x+ y)
!
= P (x) + P (y).
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As has maybe to be shown: This is only possible in the real case when x and y
are real and nonnegative and x+ y ≤ 1.

(b) Su�ciency: If all zi = pi are real and pi ≥ 0 with
∑

i pi = 1, then each
pi lies in [0, 1] and

P
(∑
z∈A

z
)
= P

(∑
pi∈A

pi

)
=

∑
pi∈A

pi.

Thus, Q(A) =
∑

pi∈A pi, which is clearly �nitely additive and satis�es Q(Ω) = 1
and Q(∅) = 0. Hence, Q is a probability measure in the classical sense.

Remark 2. This shows that one obtains a genuine probability structure only in
the real, nonnegative case (in particular, in the classical real simplex). If any zi is
complex (with nonzero imaginary part) or negative, the linearity of P fails and we
do not obtain an additive law for Q.

5 Further Observations

5.1 Symmetry

From P (1− z) = 1−P (z) it follows that P (z) and P (1− z) always sum to 1. We
can interpret this as a �complementary probability�, where z may be any complex
number. This can be seen as a symmetric construction in which the point z and
the point 1− z partition the interval (or segment) between 0 and 1 into two parts.

5.2 Monotonicity in the Real Case

If x < y in [0, 1], then P (x) = x and P (y) = y, so P (y) > P (x). For complex
numbers, there is no total order, so simple �monotonicity� cannot be de�ned.

6 Additive and Multiplicative Processes

Motivated by classical stochastic processes, we now de�ne the following: Let
z1, . . . , zn ∈ C with

z1 + · · ·+ zn = 1,

and de�ne the probabilities for selecting zk as

P (zk).

That is, at each step, one chooses zk with the �success probability� P (zk) (a pro-
cedure for this will be shown below).

8



6.1 Additive Case

De�nition 1 (Additive Process). Let (vt)t=0,1,2,... be a sequence in C with initial
value v0 = 0. In each time step t ≥ 1, the following mechanism is executed:

1. Select a value zk from the set {z1, . . . , zn} with probability P (zk).

2. Set vt+1 = vt + zk.

In the classical real case (all zk ≥ 0,
∑

k zk = 1), this resembles a discrete
Markov process in which the system makes a �jump� of zk at each step. In the
complex setting, the analogy remains, although the interpretation is more chal-
lenging since the linearity P (z1 + z2) = P (z1) + P (z2) does not hold.

6.2 Multiplicative Case

De�nition 2 (Multiplicative Process). Let (vt)t=0,1,2,... be a sequence in C with
initial value v0 = 1. In each time step t ≥ 1:

1. Select a value zk from {z1, . . . , zn} with probability P (zk).

2. Set vt+1 = vt · zk.

This may be called a �multiplicative system.� In real stochastic processes, a
�xed �distribution� on factors > 0 would be unusual; nevertheless, one could de�ne
a random walk in multiplicative form, which is equivalent to a log-additive process.

7 Implementation of the Selection via a �Multiple

Bernoulli� Procedure

With
z1 + z2 + · · ·+ zn = 1,

and the de�nition

P (zk) =
|zk|

|zk|+ |1− zk|
,

one can also realize the selection of a zk in a cascading manner through repeated
Bernoulli trials. This is reminiscent of the classical construction of an n-ary discrete
random variable by a sequence of coin tosses:

De�nition 3 (Multiple Bernoulli Procedure). We wish to select a zk. Start with
k = 1:

1. Toss a coin with success probability P (z1). If it is a success, select z1.
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2. If not, toss a coin with success probability P (z1+z2). If it is a success, select
z2.

3. If again unsuccessful, toss a coin with success probability P (z1 + z2 + z3); if
successful, select z3.

4. . . .

5. If you reach zn−1 without success, toss a coin with success probability P
(∑n−1

j=1 zj

)
.

If successful, select zn−1; otherwise, select zn.

It is to be shown that in the end, zk is selected with exactly probability P (zk):

Remark 3. In the pure real case zk ≥ 0 with
∑

zk = 1, we have P (zk) = zk

and P
(∑m

j=1 zj

)
=

∑m
j=1 zj. Then the above construction is identical to the well-

known �inversion of the cumulative distribution,� i.e., the hit probability is p1,
then p2, etc., as taught in discrete stochastic theory. For complex zk, only the
de�nition of P (·) changes, but the idea of a sequential (Bernoulli-type) selection
remains formally intact.

8 Conclusion

We have considered:

� Additive and Multiplicative Processes: One can de�ne stochastic pro-
cesses in which, at each step, one selects a zk with probability P (zk) and
applies it either additively or multiplicatively; this leads to di�erent trajec-
tories vt in the complex plane.

� Multiple Bernoulli: In Section ??, we showed how to implement a selection
of z1, . . . , zn via a sequence of Bernoulli trials (each with a �complex� P (·)).
This generalizes the real n-ary experiment in a certain way.

However, if one expects genuine additivity or σ-additivity, the real case {zk ⊆
[0, 1]} is indispensable, as shown in the previous proofs.
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8.1 Proof of Degeneration of the Ellipse to a Line Segment

We prove that the ellipse de�ned by

|z|+ |1− z| = 2a,

with foci 0 and 1, degenerates to the line segment between 0 and 1 if and only if

2a = |0− 1| = 1, that is, a =
1

2
.

We use the triangle inequality for this purpose.

Proof: For any z ∈ C, the triangle inequality gives

|z|+ |1− z| ≥ |(1− z)− z| = |1− 2z| (not directly, but in fact:)

More generally, for any two points A,B and any point X in the plane it holds that

|X − A|+ |X −B| ≥ |A−B|.
Applying this with A = 0, B = 1, and X = z, we obtain

|z|+ |1− z| ≥ |0− 1| = 1.

It is known that equality in the triangle inequality holds if and only if the point
X (here z) lies on the line through A and B and between A and B; that is, z lies
on the line segment from 0 to 1.

Now, substitute 2a = 1 into our ellipse equation

|z|+ |1− z| = 2a.

Then the equation becomes
|z|+ |1− z| = 1.

Since the inequality
|z|+ |1− z| ≥ 1

holds for all z ∈ C, the equality |z| + |1 − z| = 1 is possible only if z lies exactly
on the line segment between 0 and 1.

Conclusion: The ellipse

|z|+ |1− z| = 2a

degenerates to the line segment between the foci 0 and 1 if and only if

2a = 1 =⇒ a =
1

2
.

If a > 1
2
, then 2a > 1 and the equation describes a nondegenerate ellipse (with a

constant sum of distances greater than the distance between the foci).

Thus, it is proven that under the condition

If a =
1

2
, then the ellipse degenerates to the line segment between 0 and 1.
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8.2 Ellipses De�ned by a Complex z and the Classical Case

Every z ∈ C de�nes an ellipse

Ez = {w ∈ C | |w|+ |w − 1| = |z|+ |1− z|},

with foci F1 = 0 and F2 = 1. The constant sum of distances is also written as

|w|+ |w − 1| = 2a,

where the half-axis (i.e., half the sum of distances) is given by

a =
1

2

(
|z|+ |1− z|

)
.

In the classical case, we consider real numbers z = p ∈ [0, 1]. For such z it
holds that:

|p| = p and |1− p| = 1− p.

It follows that

a =
1

2
(p+ (1− p)) =

1

2
.

Thus, the ellipse equation becomes

|w|+ |w − 1| = 2a = 1.

As shown in the classical proof of the degeneration of an ellipse to a line segment,
we have

|w|+ |w − 1| ≥ 1 for all w ∈ C,

and equality occurs exactly when w lies on the line segment between 0 and 1. That
is,

Ep = {w ∈ C | |w|+ |w − 1| = 1} = [0, 1].

The function

P (z) =
|z|

|z|+ |1− z|
has the property in the real case z = p ∈ [0, 1] that

P (p) =
p

p+ (1− p)
= p.

Thus, we have
P (z) = z ⇐⇒ z ∈ [0, 1].

Since for z ∈ [0, 1] the corresponding ellipse Ez degenerates to

|w|+ |w − 1| = |z|+ |1− z| = p+ (1− p) = 1,
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we obtain:

P (z) = z ⇐⇒ a =
1

2
⇐⇒ Ez = [0, 1].

Thus, we have shown that the ellipse Ez degenerates to the line segment be-
tween 0 and 1 if and only if z ∈ [0, 1] (i.e., P (z) = z), which is equivalent to
a = 1

2
.
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