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1 Fish, Imaginary Coins, and Complex Probabili-
ties

What do fish, imaginary coins, and complex probabilities have in common? In
this section, we tell an illustrative story that humorously connects these three
seemingly different concepts.

Imagine the complex plane as a vast, mysterious ocean. In this ocean, n fish
swim, represented by complex numbers z1, 29, ..., 2, € C, such that:
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We cast a one-dimensional net into this ocean — the net stretches from 0 = 0 + 0i
to 1 = 14 0i. This net is intended to catch fish, but it has a large hole at the
point 0. Every fish that is located there immediately escapes and is never caught.

Our hand is firmly positioned at 1 (that is, at 1 + 0i). With our hand, we can
also reach outside the net to catch a fish directly with bare hands. The probability
of catching a particular fish z is to be proportional to the distance of the fish from
the resting hand. Concretely, we define
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The complementary probability of not catching the selected fish is then

We now distinguish between two cases:



First Case: All fish are inside the net, i.e. each zj lies in the interval [0, 1] (as
a real number). In this case, it is guaranteed that we will catch a fish, because

1=P(1) = P(i zk> - iP(zk) — P(Q).

This means that with certainty a fish will be caught — although the individual
catch probability depends on the fish’s position. For example, if

1 2
a=g3 and 2z = -,

3
then

1 2

P(z) = 3 and P(z) = 3
If we target fish z;, we catch it with probability %; if that attempt fails, then the
other fish will be caught by the net with probability %

Second Case: Some fish swim outside the net, i.e. there are fish z, ¢ [0, 1]
(that is, complex numbers with nonvanishing imaginary part). In this case, it may
happen that the catch probability of a fish is so low that we might not catch any
fish at all. For example, let

Then
21+ 20+ 23 = 1.

Calculating, we have:
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while
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This means that if we target fish 2, the probability of catching it is about 41.4%,

whereas with approximately 58.6% probability the fish escapes — our hand reaches
outside the net and catches nothing.

P(z) = P(z3) = ~ 0.414.

In the first case, where all fish are inside the net, it is thus certain that we will
catch a fish, while in the second case, catching a fish becomes uncertain.



Now, we extend this story to infinitely many fish — and thereby transition to
complex or imaginary coins. As described by Gabor Székely, we wish to allow not
only “half-coins” but also complex-valued coins.

Let z be a complex number with positive real part. The complex coin is defined
by its generating function:
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and by setting z = 1 we obtain:

i zp = 1.
n=0

Here,

and for truly complex x one may write
['(z+1)
Fn+ 1)z —n+1)

Depending on the choice of x, there are now potentially infinitely many fish
20, 21, 22, - - - In the ocean that together sum to 1.

zp = exp(—xlog2)

We interpret this as follows:

e If z is chosen to be a natural number, then all z; lie in the interval [0, 1]. In
that case,

Zp = P(Zn),

i.e. the probability P(z,) can be understood as the classical probability of
obtaining exactly n heads in x tosses of a fair coin.

o If, for example, x = \/—1 is chosen, then the z, are complex. In this case,
we toss the imaginary coin and interpret P(z,) as the probability that in
xr = 1 tosses we obtain exactly n heads — where “heads” is understood in
a metaphorical sense. With probability P(z,) we catch that fish, and with
probability 1—P(z,) we do not. We say that we toss the imaginary coin x = i
times and aim for a specific number n (i.e. we want to catch a specific fish z,,);
we are hoping to get exactly n heads, meaning we succeed in catching that
particular fish z, with probability P(z,), and fail with probability 1 — P(z,).

In the first case, we can say: the imaginary coin lands on the ground and
shows n heads. In the second case, we can say: the imaginary coin is still in
the air and has not yet landed to reveal the number of heads.



Thus, the story shows:

Fish, imaginary coins, and complex probabilities all share a
system of sums and geometric ratios. Fish in an ocean (the com-
plex plane) are described by their positions z;, and a net stretched
from 0 to 1 catches the fish depending on their distance from our hand
at 1. The catch probability is given by
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If the fish is directly inside the net, this corresponds to the classical
probability; if it is outside, the catch probability decreases. Similarly,
we can imagine an imaginary coin whose generating function produces
infinitely many fish (outcomes) — demonstrating that complex proba-
bilities lead to a sort of “probability distribution” when we extend the
conventional, real viewpoint.

This story humorously connects the world of fish, imaginary coins, and complex
probabilities into a consistent concept that extends classical probability theory and
opens up new perspectives.



2 Introduction

We consider the function

2]
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where z = a+b1iin the complex plane (with |z| = v/a? 4 b?) lies. In this document,
we prove some fundamental properties of this function, including the complemen-
tary probability P(1 — z) =1 — P(z) as well as P(0) = 0 and P(1) = 1. We then
discuss under which conditions a measure-theoretic probability concept for finite
sums of complex numbers can be obtained. In particular, we show that genuine
o-additivity is achieved only in the real case z; > 0.

3 Basic Properties of P

3.1 Complementary Probability

Theorem 1 (Complementary Probability). For every z € C with z # 1 it holds
that
P(l1—-z2) =1 — P(z).

Proof. Let z € C. We have

|1— 2| B |1 — z|
11—z|+[1-(1—=2)  [1—z+]|z|"

P(1—2) =

The denominator is |z| + |1 — z|. Hence,

P(l—2z) = I N 1_L = 1— P(z).
2] + |1 — 2] |2 + |1 — 2]

3.2 Boundary Values P(0) and P(1)

Theorem 2 (Boundary Cases: Impossible (0) and Certain (1) Events).
P(z) =0 < 2=0, P(z) =1« z=1.

Proof. e For z = 0:

0] 0
P(0) = - _
(0) o +[1-0] 0+1
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o For z =1:
1] 1

[ +|1—1] 1+0

Similarly, the converse holds. [

P(1) = - 1

3.3 Real Special Case and Linear Behavior

Theorem 3 (Real Embedding). If z = p € [0,1] C R, then P(z) = p. In other

words,
p

p+(1—p)

Proof. In the real case z = p € R with 0 < p < 1 we have |p| = pand |1—p| = 1—p.
Therefore,

P(p) = = p.

p P

Plo) = p+(1—-p 1

]

Remark 1. This shows that in the real special case, P(z) degenerates exactly to
a Bernoulli probability p. That is, we obtain classical probabilistic behavior with
P(0)=0and P(1) =1aswellas P(x+vy) = P(z)+P(y) ifz,y > 0and z+y < 1.

4 Finite Sums and o-Additivity

Suppose we have finitely many complex numbers zq, ..., z, € C with
21+22+"'—|—2n = 1.

Define
Q={z,...,2z,} and for any subset A C Q

Q(A) = P( Z z).

z€A

set

The question is whether ) can be regarded as a probability measure on the power
set of , in particular, whether o-additivity (or finite additivity) holds:

Q(AUB) = Q(A)+ Q(B) for ANB = 2.



4.1 Why in the General Complex Case Additivity Fails
In general, for complex z; (or even negative real z;) we have

Plx+y) # P(z)+ P(y).
Indeed, P is not linear:

[z + y

Plx+y) = ;
CHy) = T =@ Ty)

while

] vl
P P = .
@+PW) = grin=a T pEn=y

These sums do not, in general, coincide. Hence, the desired relation Q(A U B) =
Q(A) + Q(B) for disjoint A, B does not hold.

4.2 Characterization of o-Additivity
Theorem 4 (Additivity Only in the Real, Nonnegative Case). The function
Q(A) = P(Z z)
z€A

is finitely additive (and thus a probability measure on Q) if and only if all z; are
real and nonnegative and ), z; = 1. In this case, we usually write z; = p; € [0, 1]
and obtain

Q(A) = Zz (classical probability theory).

z€EA

Proof. (a) Wishful Necessity: I do not have a proof for this, but the idea is:
Assume that Q(A) is finitely additive, i.e.,

Q(AUB) = Q(A)+ Q(B) for disjoint A, B.
In particular, for singleton sets {z;} and {z;} with i # j,

Q({zi 7}) = Q{=z}) + Q({z}),

so that
P(Zi—l-Zj) = P(Z,L> —|—P<ZJ)

Let x := z; and y := z;. In order for such additivity to hold, we must have
!
P(x +vy) = P(z) + P(y).
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As has maybe to be shown: This is only possible in the real case when x and y
are real and nonnegative and v +y < 1.

(b) Sufficiency: If all z; = p; are real and p; > 0 with ), p; = 1, then each

p;i lies in [0, 1] and
P<Zz) - P(Zpi) = Ze;pi-

z€A piEA

Thus, Q(A) = >_, 4 pi, which is clearly finitely additive and satisfies Q(Q2) = 1
and Q(&) = 0. Hence, @ is a probability measure in the classical sense. O

Remark 2. This shows that one obtains a genuine probability structure only in
the real, nonnegative case (in particular, in the classical real simplex). If any z; is
complex (with nonzero imaginary part) or negative, the linearity of P fails and we
do not obtain an additive law for ().

5 Further Observations

5.1 Symmetry

From P(1 —z) =1— P(z) it follows that P(z) and P(1 — z) always sum to 1. We
can interpret this as a “complementary probability”, where z may be any complex
number. This can be seen as a symmetric construction in which the point z and
the point 1 — z partition the interval (or segment) between 0 and 1 into two parts.

5.2 Monotonicity in the Real Case

If 2 < yin [0,1], then P(x) = z and P(y) = y, so P(y) > P(x). For complex
numbers, there is no total order, so simple “monotonicity” cannot be defined.

6 Additive and Multiplicative Processes

Motivated by classical stochastic processes, we now define the following: Let
21y ..., 2 € C with
Stz = 1,

and define the probabilities for selecting z; as

P(Zk)

That is, at each step, one chooses z with the “success probability” P(zy) (a pro-
cedure for this will be shown below).



6.1 Additive Case

Definition 1 (Additive Process). Let (v¢)i=01.2,.. be a sequence in C with initial
value vy = 0. In each time step ¢t > 1, the following mechanism is executed:

1. Select a value zj from the set {z1,...,2,} with probability P(z).
2. Set viiq1 = v + 2.

In the classical real case (all z; > 0, >, 2, = 1), this resembles a discrete
Markov process in which the system makes a “jump” of z, at each step. In the
complex setting, the analogy remains, although the interpretation is more chal-
lenging since the linearity P(z; 4+ 2z2) = P(21) + P(22) does not hold.

6.2 Multiplicative Case

Definition 2 (Multiplicative Process). Let (v;)i—012,. be a sequence in C with
initial value vg = 1. In each time step t > 1:

1. Select a value z;, from {z1, ..., z,} with probability P(zy).
2. Set vy = vy - 2.

This may be called a “multiplicative system.” In real stochastic processes, a
fixed “distribution” on factors > 0 would be unusual; nevertheless, one could define
a random walk in multiplicative form, which is equivalent to a log-additive process.

7 Implementation of the Selection via a “Multiple
Bernoulli” Procedure
With
sttt =1,
and the definition

|2
J2 S ol
(2) |26 + |1 — 21|

one can also realize the selection of a z; in a cascading manner through repeated

Bernoulli trials. This is reminiscent of the classical construction of an n-ary discrete
random variable by a sequence of coin tosses:

Definition 3 (Multiple Bernoulli Procedure). We wish to select a zj. Start with
k=1

1. Toss a coin with success probability P(z1). If it is a success, select 2.
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2. If not, toss a coin with success probability P(z; + z2). If it is a success, select
29.

3. If again unsuccessful, toss a coin with success probability P(z; + 2o + 23); if
successful, select zs.

5. If you reach z,_; without success, toss a coin with success probability P (Zj:_ll z]-) .

If successful, select z,_1; otherwise, select z,.

It is to be shown that in the end, z; is selected with exactly probability P(zy):

Remark 3. In the pure real case z;, > 0 with >z, = 1, we have P(z) = z

and P(ZTZI zj> = i, zj- Then the above construction is identical to the well-
known “inversion of the cumulative distribution,” i.e., the hit probability is pi,
then po, etc., as taught in discrete stochastic theory. For complex zj, only the
definition of P(-) changes, but the idea of a sequential (Bernoulli-type) selection

remains formally intact.

8 Conclusion

We have considered:

e Additive and Multiplicative Processes: One can define stochastic pro-
cesses in which, at each step, one selects a z; with probability P(z) and
applies it either additively or multiplicatively; this leads to different trajec-
tories v; in the complex plane.

e Multiple Bernoulli: In Section 7?7, we showed how to implement a selection
of z1,..., 2, via a sequence of Bernoulli trials (each with a “complex” P(-)).
This generalizes the real n-ary experiment in a certain way.

However, if one expects genuine additivity or o-additivity, the real case {z; C
[0, 1]} is indispensable, as shown in the previous proofs.
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8.1 Proof of Degeneration of the Ellipse to a Line Segment

We prove that the ellipse defined by
|z| + |1 — 2| = 2a,

with foci 0 and 1, degenerates to the line segment between 0 and 1 if and only if

) 1
20 =10—-1| =1, thatls,a:§.

We use the triangle inequality for this purpose.

Proof: For any z € C, the triangle inequality gives
|z| + |1 — 2| > [(1 —2) —z| = |1 —2z| (not directly, but in fact:)
More generally, for any two points A, B and any point X in the plane it holds that
| X —A|+|X —-B|>|A-B|.
Applying this with A =0, B =1, and X = 2, we obtain
|z| +]1 =2 >]0-1] = 1.

It is known that equality in the triangle inequality holds if and only if the point
X (here z) lies on the line through A and B and between A and B; that is, z lies
on the line segment from 0 to 1.

Now, substitute 2a = 1 into our ellipse equation

|z| + |1 — 2| = 2a.
Then the equation becomes
|z +]1— 2| =1.
Since the inequality
2 41— 2] > 1
holds for all z € C, the equality |z| + |1 — z| = 1 is possible only if z lies exactly
on the line segment between 0 and 1.

Conclusion: The ellipse
|z + 1 — 2| = 2a

degenerates to the line segment between the foci 0 and 1 if and only if

=1 = a=-.
a a 2

If a > %, then 2a > 1 and the equation describes a nondegenerate ellipse (with a
constant sum of distances greater than the distance between the foci).

Thus, it is proven that under the condition

1
Ifa= 5 then the ellipse degenerates to the line segment between 0 and 1.
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8.2 Ellipses Defined by a Complex z and the Classical Case

Every z € C defines an ellipse
E, ={w e Cl|w/+|w—1] = [z + |1 - z[},
with foci F; = 0 and F; = 1. The constant sum of distances is also written as
|lw| + |w — 1| = 2a,

where the half-axis (i.e., half the sum of distances) is given by

1
a= 5(]2]+|1—z|>

In the classical case, we consider real numbers z = p € [0,1]. For such z it
holds that:

Ipl=p and [l—-p[=1-p.
It follows that

1 1
== — 1 _ pu— .
a=5p+1-p) =5
Thus, the ellipse equation becomes
|w|+ |w— 1] = 2a = 1.

As shown in the classical proof of the degeneration of an ellipse to a line segment,
we have
lw|+|w—1]>1 forall weC,

and equality occurs exactly when w lies on the line segment between 0 and 1. That
is,
E, ={weC||w|+|w—-1] =1} =[0,1].

The function | |
VA
P(z)= ————
B =T

has the property in the real case z = p € [0, 1] that

p

)

Thus, we have
P(z)=2z <<= z€]0,1].

Since for z € [0, 1] the corresponding ellipse E, degenerates to
jwl+[w—1]=|z[+ [l —z[=p+ (1 —-p) =1,
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we obtain: .
P(z) =2z <« a=5 < E. =10,1].

Thus, we have shown that the ellipse F, degenerates to the line segment be-

tween 0 and 1 if and only if z € [0,1] (i.e., P(z) = z), which is equivalent to
1

CL:§.
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