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This paper presents a novel framework for constructing a semantic geome-
try of logic using Reproducing Kernel Hilbert Spaces (RKHS). It develops a
geometric structure to measure similarities between entities in a set X by uti-
lizing a positive semi-definite kernel. This structure facilitates the embedding
of Boolean and  Lukasiewicz logics within this geometric space, providing a
novel perspective on traditional logical operations and paradoxes such as the
Liar Paradox.

The research introduces mathematical formalism for projecting seman-
tic vectors and explores the relationships between conceptual and semantic
spaces through the application of the cosine kernel. The paper also demons-
trates how logical operations, such as conjunction and implication, can be
represented as geometric operations in RKHS. Through practical examples,
the paper showcases potential applications in natural language processing
and artificial intelligence, where combining geometric and logical reasoning
enhances both understanding and computational efficiency.

Overall, this paper sets the groundwork for further exploration into the
intersections of geometry, logic, and semantics, offering promising directions
for future theoretical and applied research in complex information systems.
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1 Introduction and aim

Disclaimer: This writing has been written by the author in dialogue with a chat-
assistant to correct the wording and input new impulses. All errors which remain, are in
sole responsibility of the author, so it would be nice, if an error is found to report it to
the author via email, so it can be corrected.

This paper aims to initiate the development of a semantic geometry of logic by utilizing
the theoretical framework of Reproducing Kernel Hilbert Spaces (RKHS) [7]. I am
thankful to Prof. Saburou Saitoh for the correspondence with suggestions and discussions
around the topic of RKHS. To anchor this abstract concept within practical applications,
we provide a series of examples. We begin by considering a set X, which can represent
various entities such as words, real-world objects, abstract objects, or natural numbers.
For this set, we assume that we are given a positive semi-definite kernel function k,
where k : X ×X → [−1, 1], satisfying k(x, x) = 1 for all x ∈ X.

The kernel trick, a widely used method in machine learning, allows efficient computa-
tions in infinite-dimensional spaces while employing only finite resources. This method
has been notably applied in support vector machines for solving classification problems.
Implicit in this approach is a geometric structure that underlies the computations. To
the best of our knowledge, the first formal exploration of a geometry for logic was under-
taken by David Miller and Jonathan Westphal in their works ’A Geometry of Logic’ and
’Logic of Vectors’. I am thankful to David Miller for pointing to the articles by Thomas
Mormann: ‘Geometry of Logic and Truth Approximation’. In R. Festa, A. Aliseda, & J.
Peijnenburg, editors (2005), pp. 429–452. Confirmation, Empirical Progress, and Truth
Approximation. Amsterdam & Atlanta: Editions Rodopi B.V.

‘Truthlikeness for Theories on Countable Languages’. In I.C. Jarvie, K.M. Milford,
& D.W. Miller, editors (2006), pp.3-15. Karl Popper. A Centenary Assessment. Volume
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III, Science. Aldershot & Burlington VT: Ashgate. Paperback edition. London: College
Publications.

In both articles a similar route is taken as is being developed in this writing.

2 Definitions and first properties

2.1 Motivation:

The main motivation for these definitions comes from the following situation:
LetX be a finite set and k : X×X → R be a positive semi-definite, symmetric function

with k(x, x) = 1 and −1 ≤ k(x, y) ≤ 1. Then, by the Moore-Aronszajn theorem, or since
X is finite, Cholesky-decomposition will do, there exists a map ϕ : X → H, where H is
a Hilbert space, such that

k(x, y) = ⟨ϕ(x), ϕ(y)⟩.

Now, let w ∈ X, so that 1 = k(w,w) = |ϕ(w)|2 = |ϕ(w)|. Then for each x ∈ X, we
have:

k(w, x)ϕ(w) = ⟨ϕ(w), ϕ(x)⟩ϕ(w) = tϕ(w) =: α,

where I have set t := k(w, x), and thus −1 ≤ t ≤ 1. I call the resulting vector
tϕ(w) = α, which is an element of Gw := {tϕ(w) | −1 ≤ t ≤ 1}.

The following definitions are inspired by Lukasiewicz logic and the idea is to represent
a perspective in logic by a unit vector ϕ(w) and projections of other unit vectors give
rise to a logic like the Lukasiewicz logic but which depends on the perspective vector
ϕ(w):

For a set X and w ∈ X such that ϕ(w) ∈ H where H is a Hilbert space and such
that|ϕ(w)| = 1 we define Gw := {tϕ(w) | −1 ≤ t ≤ 1}.

For α, β ∈ Gw we define:

α ∧ β := min(⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩)ϕ(w)

α ∨ β := max(⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩)ϕ(w)

α → β := min(1, 1 + ⟨ϕ(w), β⟩ − ⟨ϕ(w), α⟩)ϕ(w)

α ↔ β := (α → β) ∧ (β → α)

¬α := −α
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µ(α) =


T if ⟨ϕ(w), α⟩ > 0,

I if ⟨ϕ(w), α⟩ = 0,

F if ⟨ϕ(w), α⟩ < 0.

In the case of α := ⟨ϕ(w), ϕ(x)⟩ϕ(w) = k(w, x)ϕ(w) and β := ⟨ϕ(w), ϕ(y)⟩ϕ(w) =
k(w, y)ϕ(w), we have, due to

⟨ϕ(w), α⟩ = ⟨ϕ(w), ⟨ϕ(w), ϕ(x)⟩ϕ(w)⟩
= ⟨ϕ(w), ϕ(w)⟩ · ⟨ϕ(w), ϕ(x)⟩ = 1 · ⟨ϕ(w), ϕ(x)⟩

= ⟨ϕ(w), ϕ(x)⟩
that

α ∧ β = min(⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩)ϕ(w)

= min(⟨ϕ(w), ϕ(x)⟩, ⟨ϕ(w), ϕ(y)⟩)ϕ(w) = min(k(w, x), k(w, y))ϕ(w)

which is how we define x ∧ y relw.
We have the following properties:

1. Double Negation

Statement:
¬(¬α) = α

Proof: Given that ¬α = −α, applying negation twice yields:

¬(¬α) = ¬(−α) = −(−α) = α

Hence, double negation holds.

2. De Morgan’s Laws

First Law:
¬(α ∧ β) = ¬α ∨ ¬β

Proof:
¬(α ∧ β) = −min(⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩)ϕ(w)

¬α ∨ ¬β = max(⟨ϕ(w),−α⟩, ⟨ϕ(w),−β⟩)ϕ(w) = max(−⟨ϕ(w), α⟩,−⟨ϕ(w), β⟩)ϕ(w)

Since max(−a,−b) = −min(a, b), the equality holds.
Second Law:

¬(α ∨ β) = ¬α ∧ ¬β
Proof: Similar reasoning as above shows that:

¬(α ∨ β) = −max(⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩)ϕ(w)

¬α ∧ ¬β = min(⟨ϕ(w),−α⟩, ⟨ϕ(w),−β⟩)ϕ(w) = min(−⟨ϕ(w), α⟩,−⟨ϕ(w), β⟩)ϕ(w)

Since min(−a,−b) = −max(a, b), the equality holds.
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3. Associativity and Commutativity

Associativity: Both ∧ and ∨ are associative because the min and max functions are
associative.

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ

α ∨ (β ∨ γ) = (α ∨ β) ∨ γ

Commutativity: Both ∧ and ∨ are commutative.

α ∧ β = β ∧ α

α ∨ β = β ∨ α

4. Distributivity

Distributive Laws:
α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)

α ∨ (β ∧ γ) = (α ∨ β) ∧ (α ∨ γ)

Proof: These follow from the distributive properties of min and max:

min(a,max(b, c)) = max(min(a, b),min(a, c))

max(a,min(b, c)) = min(max(a, b),max(a, c))

5. Idempotency

Statements:
α ∧ α = α

α ∨ α = α

Proof: Since min(a, a) = a and max(a, a) = a, idempotency holds.

6. Law of Included Middle

Statement:
µ(α ∨ ¬α) = T or = I

Explanation: α∨¬α = max(⟨ϕ(w), α⟩, ⟨ϕ(w),−α⟩)ϕ(w) = |⟨ϕ(w), α⟩|ϕ(w). Therefore,
µ(α ∨ ¬α) maps to T if ⟨ϕ(w), α⟩ ≠ 0 and I if ⟨ϕ(w), α⟩ = 0. This is similar to the
classical law (Law of excluded middle) but includes an intermediate state I which stands
for ’neutral / indeterminate / unknown’.
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7. Biconditional

We have:

α ↔ β = (1 − | ⟨ϕ(w), α− β⟩ |)ϕ(w)

Proof: Let α = tϕ(w), β = t′ϕ(w). Then we have:

α ↔ β = min(1, 1 + t′ − t)ϕ(w) ∧ min(1, 1 + t− t′)ϕ(w)

= min(min(1, 1 + t′ − t),min(1, 1 + t− t′))ϕ(w) = (1 − |t− t′|)ϕ(w)

= (1 − | ⟨ϕ(w), α− β⟩ |)ϕ(w)

8. Tolerance relation on Gw

Statement: The relation ≡ defined through

α ≡ β : ⇐⇒ µ(α ↔ β) = T

is symmetric and reflexive, hence a tolerance relation on Gw. Proof: Reflexive: By ’7.
Biconditional’ we have:

α ↔ α = (1 − | ⟨ϕ(w), α− α⟩ |)ϕ(w) = ϕ(w)

hence µ(α ↔ α) = T so α ≡ α.
Symmetry: We have by ’7. Biconditional’:

α ↔ β = (1 − | ⟨ϕ(w), α− β⟩ |)ϕ(w)

= (1 − | − ⟨ϕ(w),−α + β⟩ |)ϕ(w)

= (1 − | ⟨ϕ(w), β − α⟩ |)ϕ(w) = β ↔ α

hence T = µ(α ↔ β) = µ(β ↔ α) so α ≡ β =⇒ β ≡ α.

Comment

The relation is in general not transitive.

9. Law of Non-Contradiction

Statement:
µ(α ∧ ¬α) ̸= T

Proof: Compute α ∧ ¬α:

α ∧ ¬α = min(⟨ϕ(w), α⟩, ⟨ϕ(w),−α⟩)ϕ(w)
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Let t = ⟨ϕ(w), α⟩. Then:

α ∧ ¬α = min(t,−t)ϕ(w) = −|t|ϕ(w)

Thus:

µ(α ∧ ¬α) =

{
F if t ̸= 0,

I if t = 0.

In both cases, µ(α∧¬α) ̸= T . Therefore, the conjunction of a statement and its negation
never maps to true, aligning with the Law of Non-Contradiction.

10. Contraposition

Statement:
α → β = ¬β → ¬α

Proof: Using the definition of implication:

α → β = min(1, 1 + ⟨ϕ(w), β⟩ − ⟨ϕ(w), α⟩)ϕ(w)

¬β → ¬α = min(1, 1 + ⟨ϕ(w),¬α⟩ − ⟨ϕ(w),¬β⟩)ϕ(w)

= min(1, 1 + ⟨ϕ(w),−α⟩ − ⟨ϕ(w),−β⟩)ϕ(w)

= min(1, 1 − ⟨ϕ(w), α⟩ + ⟨ϕ(w), β⟩)ϕ(w)

= min(1, 1 + ⟨ϕ(w), β⟩ − ⟨ϕ(w), α⟩)ϕ(w)

= α → β

Hence, α → β = ¬β → ¬α, demonstrating that contraposition holds in this framework.

11. Law of Identity

Statement:
µ(α → α) = T

Proof: Using the definition of implication:

α → α = min(1, 1 + ⟨ϕ(w), α⟩ − ⟨ϕ(w), α⟩)ϕ(w) = min(1, 1)ϕ(w) = ϕ(w)

Thus:
µ(α → α) = µ(ϕ(w)) = T (since ⟨ϕ(w), ϕ(w)⟩ = 1 > 0)

Hence, the implication of any statement with itself always maps to true, analogous to
the Law of Identity in classical logic.
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12. Disjunctive Syllogism

Statement: If µ(α ∨ β) = T and µ(¬α) = T , then µ(β) = T .
Proof: Given µ(α ∨ β) = T , we have:

max(⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩) > 0

And µ(¬α) = T implies:

⟨ϕ(w),¬α⟩ = ⟨ϕ(w),−α⟩ = −⟨ϕ(w), α⟩ > 0 =⇒ ⟨ϕ(w), α⟩ < 0

Substituting into the first condition:

max(⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩) = max(a negative number, ⟨ϕ(w), β⟩) > 0

This implies:
⟨ϕ(w), β⟩ > 0 =⇒ µ(β) = T

Hence, ’Disjunctive Syllogism’ holds in this framework.
For x, y, z ∈ X, w such that |ϕ(w)| = 1 and α := k(w, x)ϕ(w), β := k(w, y)ϕ(w), γ :=

k(w, z)ϕ(w), the preceding definitons become, (please see the section ’Proofs’ before the
’Appendix with SageMath/Python’ code):

πw(x) =
⟨ϕ(w), ϕ(x)⟩
⟨ϕ(w), ϕ(w)⟩

ϕ(w) =1=<ϕ(w),ϕ(w)> ⟨ϕ(w), ϕ(x)⟩ϕ(w) = k(w, x)ϕ(w) (1)

For this last equation, we write:

x relw := x (relative to w) := πw(x) = k(w, x)ϕ(w) (2)

Now we can imagine what the meaning of ’I have a different perspective’ means. We
simply associate the projection of the semantic vector of x to some other perspective
vector w. Then ’changing perspective’ simply means to change the perspective vector
from w to say ŵ.

Let us define

(x ∧ y) relw := min(k(w, x), k(w, y))ϕ(w) (3)

(x ∨ y) relw := max(k(w, x), k(w, y))ϕ(w) (4)

(¬x) relw := −πw(x) (5)

and following Lukasiewicz:

(x→ y) relw := min(1, 1 + k(w, y) − k(w, x))ϕ(w) (6)
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(x↔ y) relw := (x ≡ y) relw := (x→ y) ∧ (y → x) relw (7)

We have the de Morgan rules, double negation, contraposition:

(¬x) ∧ (¬y) relw = ¬(x ∨ y) relw (8)

(¬x) ∨ (¬y) relw = ¬(x ∧ y) relw (9)

(¬(¬x)) relw = x relw (10)

(x→ y) relw = ((¬y) → (¬x)) relw (11)

Let us define three cases of truth values: T, F, I which should be translated to True,
False, Indeterminate. For all h ∈ RKHS space H, we have:

µ(h) =


T if ⟨ϕ(w), h⟩ > 0,

I if ⟨ϕ(w), h⟩ = 0,

F if ⟨ϕ(w), h⟩ < 0.

(12)

We have a version of ’Modus ponens’:

If µ(x relw) = T and µ(x→ y relw) = T then µ((x ∧ (x→ y)) → y) relw) = T (13)

3 Separable semantic space

A finite semantic space S = (X, k) with labels yi = ±1 for each xi ∈ X, 1 ≤ i ≤ n is
called separable by the yi if there exist a w such that X̂ := X ∪{w}, k̂ : X̂× X̂ → R is a
positive semi-definite function on X̂ which extends k, that is: k̂(x, y) = k(x, y)∀x, y ∈ X
and such that Ŝ := (X̂, k̂) is a semantic space, such that the following holds:

∀1 ≤ i ≤ n : sign(k̂(xi, w)) = yi ∈ {±1}

If S = (X, k) is separable by Y = {yi|1 ≤ i ≤ n}, then there exists a w such that:

∀1 ≤ i ≤ n : µ(xi relw) = T, if yi > 0, else F

The proof, consists in the definition of µ and because the sign can, by separability
assumption, take only values ±1.
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4 From separable semantic space to Boolean algebras

First we begin with a few properties which are easy to prove: Let S = (X, k) be a
semantic space and ϕ(w) ̸= 0 be a perspective vector. Then the following are immediate
from the definitions:

� πw(w) = k(w,w)
|ϕ(w)|2 = 1

1
ϕ(w) = ϕ(w)

� w relw = ϕ(w)

� (w ∧ x) relw = x relw

� (w ∨ x) relw = w relw

� (¬w) relw = −πw(w) = −ϕ(w)

� ((¬w) ∧ x) relw = (¬w) relw

� ((¬w) ∨ x) relw = x relw

For instance with 1 relw := w relw and 0 relw := (¬w) relw, we have:

(1 ∧ x) relw = x relw (14)

because,

(1 ∧ x) relw = (w ∧ x) relw =

= min(k(w,w), k(w, x))ϕ(x) = min(1, k(w, x))ϕ(w) =

= k(w, x)ϕ(w) = x relw

and similarliy

(0 ∨ x) relw = w relw (15)

because,

(0 ∨ x) relw = ((¬w) ∨ x) relw =

= max(k(w,¬w), k(w, x))ϕ(x) = max(−k(w,w), k(w, x))ϕ(w) =

= max(−1, k(w, x))ϕ(w) = k(w, x)ϕ(w) = x relw

Let now S = (X, k) be a separable space by Y := {yi|1 ≤ i ≤ |X| = n} and let ϕ(w)
be a perspective vector such that:

∀1 ≤ i ≤ n : sign(⟨ϕ(xi), ϕ(w)⟩ = sign(k(xi, w)) = ±1 =! yi

Then the semantic space Ŝ := (X̂, k̂) with X̂ := X ∪ {w,¬w} give rise to a Boolean
algebra A = (X̂,1 = w,0 = ¬w,∧,∨).
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Proof: First we recall the definiton of Boolean algebra:
A Boolean algebra is a set A, equipped with two binary operations ∧ (called “meet”

or “and”), ∨ (called “join” or “or”), a unary operation ¬ (called “complement” or “not”)
and two elements 0 and 1 in A (called “bottom” and “top”, or “least” and “greatest”
element, also denoted by the symbols ⊥ and ⊤, respectively), such that for all elements
a, b, and c of A, the following axioms hold:

a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c associativity
a ∨ b = b ∨ a a ∧ b = b ∧ a commutativity
a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a absorption
a ∨ 0 = a a ∧ 1 = a identity
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) distributivity
a ∨ ¬a = 1 a ∧ ¬a = 0 complements

Then we proceed: Commutativity, associativity are true because min,max are commu-
tative and associative. Absorption and distributivity are true, beacuse {min,max} over
the real numbers is a distributive lattice. We prove the complements, as the identity has
been proven for all semantic spaces:

(x ∨ (¬x)) relw = max(k(w, x) − k(w, x))ϕ(w) =

|k(w, x)|ϕ(w) = separable | ± 1|ϕ(w) =

ϕ(w) = w relw = 1 relw

Similarily:

(x ∧ (¬x)) relw = min(k(w, x) − k(w, x))ϕ(w) =

−|k(w, x)|ϕ(w) = separable −| ± 1|ϕ(w) =

−ϕ(w) = (¬w) relw = 0 relw

4.1 Construction of separable semantic spaces

Idea: Given a finite set X with a positive definite kernel on X, such that S = (X, k) is
a semantic space, then the Gram matrix is positive definite and so invertible. Let now
Y = {yi = ±1|1 ≤ i ≤ |X| = n} be ’any’ labeling of the xi. Then we can find an
extension k̂ : X̂ × X̂ → R of k, where X̂ := X ∪ w,w /∈ X such that, there exist ci ∈ R
with:

∀1 ≤ i ≤ n : yi = sign(

[
n∑

j=1

cjyjk(xi, xj)

]
) (16)

This would allow us to define:
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k̂(w, xi) :=
n∑

j=1

cjyjk(xi, xj)

and so we would get a separable semantic space:

∀1 ≤ i ≤ n : yi = sign(k̂(w, xi))

But because the Gram matrix G = (k(xi, xj))i,j is invertible, the first equation with
the cj can be solved by setting:

c := G−1y

where c = (c1, · · · , cn), y = (y1, · · · , yn). The same strategy has been used to show,
that ’primes are linearly separable’: Are primes linearly separable?

To make things more concrete, here is a semantic space with n elements, which is
separable for every Y :

� X = {1, · · · , n}

� k(i, j) = gcd(i,j)2

ij

� Let Y = {yi = ±1|1 ≤ i ≤ n} be any set on n elements consisting of ±1.

Then set

c := G−1y

and put

k̂0(w, i) :=
n∑

j=1

cjyjk(i, j)

k̂0(w,w) :=
∑

1≤i,j≤n

ciyjcjyjk(i, j)

k̂0(i, j) := k(i, j) ∀1 ≤ i, j ≤ n

where G = (k(i, j))1≤i,j≤n is the Gram matrix, which is shown below, to have non-zero
determinant. We have to normalize the kernel:

k̂(w, i) :=
k̂0(w, i)√

k̂0(w,w)k(i, i)

k̂(w,w) := 1

By the discussion above this method produces a semantic space S which given Y is
separable for Y . This concludes also the proof, that Boolean algebras can be constructed
using semantic spaces.

Page 14

https://mathoverflow.net/questions/349589/are-primes-linearly-separable


Semantic space of logic (working draft)

5 Semantic spaces of logic from finite groups

It is possible to construct to a finite group G a semantic space S := (G, k) where the
elements of X = G are the group elements and k is a positive semidefinite kernel on the
group. Here is the construction of the kernel:

Let G be a finite group with n = |G| elements. By Cayley’s theorem for finite groups,
we have an injective homomorphism of groups:

π : G→ Sn, g 7→ π(g) (17)

where each group element g is mapped to the permutation of the symmetric group Sn

on n = |G| elements, wich it generates by left multiplication:

π(g) : G→ G, x 7→ g · x

We want to associate to each group element g a matrix and then use the Frobenius
inner product to define a positive semi-definite function k on the group G as follows:

It is known , see for instance ”The Kendall and Mallows Kernels for Permutations”by
Yunlong Jiao and Jean-Philippe Vert, that the Kendall-tau function can be made to a
positive semi-definite kernel k for permutations.

Let 1{x} be the indicator function, which is = 1 if the boolean variable x is true and
0 if the boolean variable x is false, and let:

ϕ : Sn →Mn(R), σ 7→ (1{σ(i)>σ(j)} − 1{σ(i)<σ(j)})1≤i,j≤n (18)

where Mn(R) denotes n× n matrices over R.
The embedding from the finite group G to Mn(R) is then given by:

ψ : G→Mn(R), g 7→ 1√
n(n− 1)

· ϕ(π(g)) (19)

We use the Frobenius inner product on Mn(R), which is given by:

⟨A,B⟩ := tr(A ·BT ) (20)

to define a positive semi-definite, symmetric function k on G:

k : G×G→ R, (g, h) 7→ tr(ψ(g) · ψ(h)T ) (21)

The kernel k can be normalized to take value between −1 and 1 and since k(g, g) is
constant for all g ∈ G, we can normalize k to take values k(g, g) = 1 and so we get a
semantic space of logic given a finite group G.

It remains in each case to specify a perspective vector w.
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5.1 Some boolean algebras from elementary abelian groups of order
2m

Conjecture: Taking as a group G an elementary abelian group of order 2m and doing the
construction with the kernel, and taking as perspective vector w = e ∈ G the neutral
element of G, then we get a boolean algebra as defined above.

Here are some examples:

5.1.1 |G| = 2

Tabelle 1: Gram Matrix K

1 -1
-1 1

Tabelle 2: Truth values of vectors

[1, 2] T
[2, 1] F

Tabelle 3: Truth Table for AND (Perspective w = ())

() (1,2)
() T F

(1,2) F F

Tabelle 4: Truth Table for OR (Perspective w = ())

() (1,2)
() T T

(1,2) T F

Tabelle 5: Truth Table for IMPLIES (Perspective w = ())

() (1,2)
() T T

(1,2) F T
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Tabelle 6: Truth Table for IFF (Perspective w = ())

() (1,2)
() T F

(1,2) F T

5.1.2 G = Klein-Four group

Tabelle 7: Gram Matrix K

1 1/3 -1/3 -1
1/3 1 -1 -1/3
-1/3 -1 1 1/3
-1 -1/3 1/3 1

We interpret the value 1/3 of the projection k(w, x)ϕ(w) of x in direction of the per-
spective vector ϕ(w) as being 33 percent = 1/3 sure , that the vector x has truth value
’True’.

We interpret the value −1/3 of the projection k(w, x)ϕ(w) of x in direction of the
perspective vector ϕ(w) as being 33 percent = 1/3 sure , that the vector x has truth
value ’False’.

If one is forced to take the values ’True’,’Indeterminate’, ’False’ (T, I, F ), then one
can take the sign of the projection. Otherwise, one can interpret the real value of the
projection on the perspective vector as a ’fuzzy’ version of ’True’,’False’. The ’Indeter-
minate’ value can occur only when the projection is = 0, so there is not much nuanced
interpretation there.

Tabelle 8: Truth values of vectors (Perspective w = ())

[1, 2, 3, 4] T
[2, 1, 4, 3] T
[3, 4, 1, 2] F
[4, 3, 2, 1] F

Tabelle 9: Truth Table for AND (Perspective w = ())

() (3,4) (1,2) (1,2)(3,4)
() T T F F

(3,4) T T F F
(1,2) F F F F

(1,2)(3,4) F F F F
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Tabelle 10: Truth Table for OR (Perspective w = ())

() (3,4) (1,2) (1,2)(3,4)
() T T T T

(3,4) T T T T
(1,2) T T F F

(1,2)(3,4) T T F F

Tabelle 11: Truth Table for IMPLIES (Perspective w = ())

() (3,4) (1,2) (1,2)(3,4)
() T T T T

(3,4) T T T T
(1,2) F T T T

(1,2)(3,4) F F T T

Tabelle 12: Truth Table for IFF (Perspective w = ())

() (3,4) (1,2) (1,2)(3,4)
() T T F F

(3,4) T T T F
(1,2) F T T T

(1,2)(3,4) F F T T

5.1.3 |G| = 8 and G is elementary abelian

Tabelle 13: Gram Matrix K

1 5/7 3/7 1/7 -1/7 -3/7 -5/7 -1
5/7 1 1/7 3/7 -3/7 -1/7 -1 -5/7
3/7 1/7 1 5/7 -5/7 -1 -1/7 -3/7
1/7 3/7 5/7 1 -1 -5/7 -3/7 -1/7
-1/7 -3/7 -5/7 -1 1 5/7 3/7 1/7
-3/7 -1/7 -1 -5/7 5/7 1 1/7 3/7
-5/7 -1 -1/7 -3/7 3/7 1/7 1 5/7
-1 -5/7 -3/7 -1/7 1/7 3/7 5/7 1
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Tabelle 14: Truth values of vectors (Perspective w = ())

[1, 2, 3, 4, 5, 6, 7, 8] T
[2, 1, 4, 3, 6, 5, 8, 7] T
[3, 4, 1, 2, 7, 8, 5, 6] T
[4, 3, 2, 1, 8, 7, 6, 5] T
[5, 6, 7, 8, 1, 2, 3, 4] F
[6, 5, 8, 7, 2, 1, 4, 3] F
[7, 8, 5, 6, 3, 4, 1, 2] F
[8, 7, 6, 5, 4, 3, 2, 1] F

Tabelle 15: Truth Table for AND (Perspective w = ())

() (5,6) (3,4) (3,4)(5,6) (1,2) (1,2)(5,6) (1,2)(3,4) (1,2)(3,4)(5,6)
() T T T T F F F F

(5,6) T T T T F F F F
(3,4) T T T T F F F F

(3,4)(5,6) T T T T F F F F
(1,2) F F F F F F F F

(1,2)(5,6) F F F F F F F F
(1,2)(3,4) F F F F F F F F

(1,2)(3,4)(5,6) F F F F F F F F

Tabelle 16: Truth Table for OR (Perspective w = ())

() (5,6) (3,4) (3,4)(5,6) (1,2) (1,2)(5,6) (1,2)(3,4) (1,2)(3,4)(5,6)
() T T T T T T T T

(5,6) T T T T T T T T
(3,4) T T T T T T T T

(3,4)(5,6) T T T T T T T T
(1,2) T T T T F F F F

(1,2)(5,6) T T T T F F F F
(1,2)(3,4) T T T T F F F F

(1,2)(3,4)(5,6) T T T T F F F F
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Tabelle 17: Truth Table for IMPLIES (Perspective w = ())

() (5,6) (3,4) (3,4)(5,6) (1,2) (1,2)(5,6) (1,2)(3,4) (1,2)(3,4)(5,6)
() T T T T T T T T

(5,6) T T T T T T T T
(3,4) T T T T T T T T

(3,4)(5,6) T T T T T T T T
(1,2) F T T T T T T T

(1,2)(5,6) F F T T T T T T
(1,2)(3,4) F F F T T T T T

(1,2)(3,4)(5,6) F F F F T T T T

Tabelle 18: Truth Table for IFF (Perspective w = ())

() (5,6) (3,4) (3,4)(5,6) (1,2) (1,2)(5,6) (1,2)(3,4) (1,2)(3,4)(5,6)
() T T T T F F F F

(5,6) T T T T T F F F
(3,4) T T T T T T F F

(3,4)(5,6) T T T T T T T F
(1,2) F T T T T T T T

(1,2)(5,6) F F T T T T T T
(1,2)(3,4) F F F T T T T T

(1,2)(3,4)(5,6) F F F F T T T T

5.2 Some new logic tables based on finite groups

Here we present some new logic tables based on finite groups of order 4 and cyclic:

5.2.1 G = C4 is cyclic of order 4

Tabelle 19: Gram Matrix K

1 0 -1/3 0
0 1 0 -1/3

-1/3 0 1 0
0 -1/3 0 1
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Tabelle 20: Truth values of vectors (Perspective w = ())

[1, 2, 3, 4] T
[2, 3, 4, 1] I
[3, 4, 1, 2] F
[4, 1, 2, 3] I

Tabelle 21: Truth Table for AND (Perspective w = ())

() (1,2,3,4) (1,3)(2,4) (1,4,3,2)
() T I F I

(1,2,3,4) I I F I
(1,3)(2,4) F F F F
(1,4,3,2) I I F I

Tabelle 22: Truth Table for OR (Perspective w = ())

() (1,2,3,4) (1,3)(2,4) (1,4,3,2)
() T T T T

(1,2,3,4) T I I I
(1,3)(2,4) T I F I
(1,4,3,2) T I I I

Tabelle 23: Truth Table for IMPLIES (Perspective w = ())

() (1,2,3,4) (1,3)(2,4) (1,4,3,2)
() T T T T

(1,2,3,4) I T T T
(1,3)(2,4) F T T T
(1,4,3,2) I T T T

Tabelle 24: Truth Table for IFF (Perspective w = ())

() (1,2,3,4) (1,3)(2,4) (1,4,3,2)
() T I F I

(1,2,3,4) I T T T
(1,3)(2,4) F T T T
(1,4,3,2) I T T T
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6 The Liar Paradox in Semantic Spaces

The Liar Paradox is a classic illustration of self-reference and inconsistency in logic, often
summarized by the statement, ’This statement is false.’. If we assume the statement is
true, then it must be false as it claims. Conversely, if we assume it is false, then it
would paradoxically be true. This paradox highlights the difficulties in dealing with
self-referential statements in formal systems. It is known, that using multiple valued
logic, one can give the statement ’This statement is false.’ an indeterminate logical value
different from true or false. What we want to illustrate here, is that it is possible to
find a framework, where both the classical paradox and the new interpretation coexist
logically possible by altering the perspective.

To illustrate how semantic perspectives can resolve or interpret this paradox different-
ly, let’s consider an example involving vectors:

We will be interpreting the Liar paradox like this: We are searching for a sentence or
better let us call it formula L whose negation ¬L is equal to L: ¬L = L.

The basic idea is to change the perspective or point of view w, so that the truth value
or even the formula itself satisfy: ¬L = L (first interpretation) or in terms of truth values
µ(¬L) = µ(L) (second interpretation).

Let X := {e1,−e1, e2,−e2},where e1 = (0, 1), e2 = (1, 0) are standard basis vectors
in R2 with the usual inner product k(x, y) = ⟨ϕ(x), ϕ(y)⟩ = ⟨x, y⟩ and ϕ(x) = x given
by the identity map . We chose L = (0, 1) = e1 and w = (1, 0) = e2. With this choice,
the negation of L relative to w is ¬L relw is given by −L relw and with this choice, w
is perpendicular to L and −L, hence this perspective might be suited for ’resolving’ the
paradox as described above, since it is not in the same subspace spanned by L and −L.
We compute: k(w,L) = 0 =⇒ µ(L relw) = I and also k(w,¬L) = −k(w,L) = 0 =⇒
µ(¬L relw) = I. Hence

L relw = πw(L) = k(w,L)ϕ(w) = 0

0 = −k(w,L)ϕ(w) = k(w,¬L)ϕ(w) = πw(¬L) = (¬L) relw

and the first interpretation of the Liar paradox is satisfied, and also

µ(L relw) = I = µ(¬L relw)

and so the second interpretation of the Liar paradox is satisfied.
If we change the perspective w to w := L = (0, 1) or w := −L = (0,−1) then we get

in the first case:

k(w,L) = 1 =⇒ k(w,−L) = −1 =⇒ µ(Lw) = T ̸= F = µ(¬Lw)

hence the second interpretation of the Liar paradox can not be satisfied and so, also
the first interpretation can not be satisfied.

In the case of w := −L we get again that the Liar paradox can not be satisfied:

k(w,L) = −1 =⇒ k(w,−L) = 1 =⇒ µ(Lw) = F ̸= T = µ(¬Lw)
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Comment: It seems that one can give different logical meanings to the Liar paradox
through the change of the perspective. If one insists that the perspective must lie in the
same subspace generated by L and −L, then the Liar paradox can not be satisfied as
shown above. If one allows a perspective perpendicular to the subspace generated by L
and −L, then the Liar paradox can be satisfied in some sense, as shown above. Usually
in mathematics, it is often the case, that, while some equation might not be solvable in
some set or space or mathematical structure such as ring or field, it can be solved in a
larger space encompassing the original space as a substructure: x2 = −1 is not solvable
in R but is solvable in C which contains R, for example.

In fact we have the following, which are not difficult to show: Let |ϕ(w)| = 1 = |ϕ(L)|.
Than we have

� L relw = (¬L) relw

� ⇐⇒ dim(H) > 1 and k(L,w) = 0

� ⇐⇒ dim(H) > 1 and µ(L relw) = I

� ⇐⇒ dim(H) > 1 and µ((¬L) relw) = I

� ⇐⇒ dim(H) > 1 and µ((¬L) relw) = µ(L relw)

7 Conceptual Spaces and Semantic Spaces

Conceptual spaces and semantic spaces are both geometric frameworks used to model
concepts and their relationships, but they originate from different disciplines and have
distinct features. This section explores these two frameworks, their connections through
the cosine kernel, and highlights the incorporation of logic in semantic spaces, which is
not inherent in conceptual spaces.

7.1 Conceptual Spaces

A conceptual space is a geometric structure where each dimension represents a specific
quality or property relevant to the concepts being modeled [2]. Concepts are represented
as points or regions within this space, and the distance between points reflects the
dissimilarity between concepts. The conceptual space framework allows for the modeling
of concepts based on their properties and the natural relationships between them. It
emphasizes the use of geometric notions like distance and direction to capture conceptual
similarity and difference.

7.2 Semantic Spaces

A semantic space as defined in this note is often a high-dimensional vector space, such
as a Reproducing Kernel Hilbert Space (RKHS) [7], where meanings or concepts are
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represented as vectors. In semantic spaces, similarity between concepts is measured using
inner products or kernel functions.

One distinctive feature of semantic spaces is the incorporation of logical operations.
Logic in semantic spaces is facilitated through the use of kernel functions and the geome-
tric interpretation of logical connectives. This allows for operations such as conjunction,
disjunction, and implication to be defined in terms of vector operations, which is not
inherent in the traditional framework of conceptual spaces.

7.3 Connecting Conceptual Spaces and Semantic Spaces via the
Cosine Kernel

The cosine kernel serves as a bridge between conceptual spaces and semantic spaces by
providing a way to embed the geometric structure of a conceptual space into a semantic
space while preserving similarity relationships.

7.3.1 The Cosine Kernel

The cosine kernel is defined for vectors x, y ∈ Rn as:

k(x, y) =
⟨x, y⟩
∥x∥∥y∥

, (22)

where ⟨x, y⟩ denotes the standard inner product, and ∥x∥ is the Euclidean norm of
x. The cosine kernel measures the cosine of the angle between x and y, providing a
normalized similarity measure that depends solely on the orientation of the vectors, not
their magnitude.

7.3.2 Properties of the Cosine Kernel

The cosine kernel possesses key properties that make it suitable for embedding concep-
tual spaces into semantic spaces:

Theorem 7.1. For all non-zero vectors x, y ∈ Rn, the cosine kernel satisfies:

1. −1 ≤ k(x, y) ≤ 1.

2. k(x, x) = 1.

3. k(x, y) is positive semi-definite.

Beweis. 1. Boundedness (−1 ≤ k(x, y) ≤ 1)
By the Cauchy-Schwarz inequality, for any vectors x, y:

|⟨x, y⟩| ≤ ∥x∥∥y∥.

Dividing both sides by ∥x∥∥y∥ (since x, y ̸= 0, the norms are positive):
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∣∣∣∣ ⟨x, y⟩
∥x∥∥y∥

∣∣∣∣ ≤ 1,

which implies:

−1 ≤ k(x, y) ≤ 1.

2. Self-Similarity (k(x, x) = 1)
Computing k(x, x):

k(x, x) =
⟨x, x⟩
∥x∥∥x∥

=
∥x∥2

∥x∥2
= 1.

3. Positive Semi-Definiteness
For any finite set {xi}mi=1 ⊂ Rn \ {0} and real coefficients αi, consider:

m∑
i=1

m∑
j=1

αiαjk(xi, xj) =
m∑
i=1

m∑
j=1

αiαj
⟨xi, xj⟩
∥xi∥∥xj∥

=

∥∥∥∥∥
m∑
i=1

αi
xi
∥xi∥

∥∥∥∥∥
2

≥ 0.

Since the squared norm is always non-negative, k(x, y) is a positive semi-definite ker-
nel.

7.3.3 Embedding into a Reproducing Kernel Hilbert Space

By virtue of being a positive semi-definite kernel, the cosine kernel defines a Reproducing
Kernel Hilbert Space H with an associated feature map ϕ : Rn \ {0} → H such that:

k(x, y) = ⟨ϕ(x), ϕ(y)⟩H . (23)

This embedding preserves the geometric relationships from the conceptual space in
the semantic space.

7.4 Differences Highlighted: Logic in Semantic Spaces

While both conceptual and semantic spaces model concepts geometrically, a key diffe-
rence lies in the incorporation of logic within semantic spaces. Semantic spaces, especially
when structured as an RKHS, allow for the definition of logical operations using vector
operations and kernel functions. Logical connectives such as conjunction (∧), disjunction
(∨), and implication (→) can be modeled geometrically.

For example, given vectors representing propositions, one can define logical operations
as:
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Conjunction: x ∧ y = min{k(w, x), k(w, y)} · w,
Disjunction: x ∨ y = max{k(w, x), k(w, y)} · w,

Negation: ¬x = −x,

where w is a perspective vector in the semantic space.
This incorporation of logic is not inherent in conceptual spaces, which primarily focus

on the representation of concepts and their similarities or differences based on properties.
Semantic spaces extend this by enabling logical reasoning and operations within the
geometric framework.

7.5 Implications and Applications

The ability to perform logical operations in semantic spaces opens up possibilities for
applications in natural language processing, knowledge representation, and artificial in-
telligence. It allows for the combination of geometric representations of meaning with
formal logic, facilitating more sophisticated reasoning about concepts.

By embedding conceptual spaces into semantic spaces using the cosine kernel, we can
leverage the strengths of both frameworks: the intuitive geometric modeling of concepts
and the formal logical operations available in semantic spaces.

8 Examples and possible applications

8.1 Example from a dataset of ’Conceptual spaces’-community

Her is an example inspired by research in philosophy and cognitive science on Concep-
tual Spaces (see for instance the paper of Antti Hautamäki, ’A Perspectivist approach
to conceptual spaces’ [3]), which are similar to the ’semantic spaces’:

The dataset includes properties of animals such as the scaled number of legs and
intelligence.

Gram Matrix Here is the Gram matrix G constructed from the dataset after scaling
and computing the cosine kernel:

Legs Skin Cover Weight Intelligence Speed
Legs 1.00 0.28 0.54 0.43 −0.46

Skin Cover 0.28 1.00 −0.22 0.12 0.43
Weight 0.54 −0.22 1.00 0.76 −0.85

Intelligence 0.43 0.12 0.76 1.00 −0.56
Speed −0.46 0.43 −0.85 −0.56 1.00

We can perform a Cholesky decomposition on this Gram matrix to find an embedding
ϕ(x) such that:
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Gx,y = k(x, y) = ⟨ϕ(x), ϕ(y)⟩
where X = {Legs, Skin Cover,Weight, Intelligence, Speed}.

Logical Formulas and Interpretations Let’s select Intelligence as our perspective
vector w and compute the projections of each property onto w using the reproducing
property:

proj(w, x) = k(w, x)

Computed Projections:

� Legs:
proj(w,Legs) = k(Intelligence,Legs) = 0.43

� Skin Cover:

proj(w, Skin Cover) = k(Intelligence, Skin Cover) = 0.12

� Weight:
proj(w,Weight) = k(Intelligence,Weight) = 0.76

� Intelligence:

proj(w, Intelligence) = k(Intelligence, Intelligence) = 1.00

� Speed:
proj(w, Speed) = k(Intelligence, Speed) = −0.56

We interpret these projections as measures of similarity or ”degrees of truth”relative
to the perspective of intelligence.

Defined Logical Formulas 1. Formula 1: Intelligence → a

� Meaning: If an animal is intelligent, then property a holds.

� Implementation:

Implies(proj(w, Intelligence), proj(w, a))

2. Formula 2: Legs ∧ a
� Meaning: The animal has legs and property a holds.

� Implementation:
And(proj(w,Legs), proj(w, a))

3. Formula 3: Intelligence ↔ (Speed ∧ a)

� Meaning: The animal is intelligent if and only if it is fast and property a holds.

� Implementation:

Iff(proj(w, Intelligence),And(proj(w, Speed), proj(w, a)))
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Evaluation and Interpretation of Formulas We evaluate each formula for all proper-
ties a ∈ X.

Formula 1: Intelligence → a For each property a:

� Legs:
Implies(1.00, 0.43) = min(1, 1 + 0.43 − 1.00) = 0.43

Interpreted as True.

� Skin Cover:

Implies(1.00, 0.12) = min(1, 1 + 0.12 − 1.00) = 0.12

Interpreted as True.

� Weight:
Implies(1.00, 0.76) = min(1, 1 + 0.76 − 1.00) = 0.76

Interpreted as True.

� Intelligence:

Implies(1.00, 1.00) = min(1, 1 + 1.00 − 1.00) = 1.00

Interpreted as True.

� Speed:
Implies(1.00,−0.56) = min(1, 1 − 0.56 − 1.00) = −0.56

Interpreted as False.

Interpretation:

� Legs, Skin Cover, Weight, Intelligence: There’s a positive implication from
intelligence to these properties, meaning that higher intelligence is associated with
these traits.

� Speed: The implication is false, indicating that higher intelligence does not imply
higher speed—in fact, they are negatively correlated.

Formula 2: Legs ∧ a For each property a:

� Legs:
And(0.43, 0.43) = min(0.43, 0.43) = 0.43

Interpreted as True.
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� Skin Cover:
And(0.43, 0.12) = min(0.43, 0.12) = 0.12

Interpreted as True.

� Weight:
And(0.43, 0.76) = min(0.43, 0.76) = 0.43

Interpreted as True.

� Intelligence:
And(0.43, 1.00) = min(0.43, 1.00) = 0.43

Interpreted as True.

� Speed:
And(0.43,−0.56) = min(0.43,−0.56) = −0.56

Interpreted as False.

Interpretation:

� Legs, Skin Cover, Weight, Intelligence: The conjunction is true, suggesting
that having legs is positively associated with these properties.

� Speed: The conjunction is false due to the negative correlation between legs and
speed.

Formula 3: Intelligence ↔ (Speed ∧ a) For each property a:

1. Compute And(proj(w, Speed), proj(w, a)):

� Legs:
And(−0.56, 0.43) = min(−0.56, 0.43) = −0.56

� Skin Cover:

And(−0.56, 0.12) = min(−0.56, 0.12) = −0.56

� Weight:
And(−0.56, 0.76) = min(−0.56, 0.76) = −0.56

� Intelligence:

And(−0.56, 1.00) = min(−0.56, 1.00) = −0.56

� Speed:
And(−0.56,−0.56) = min(−0.56,−0.56) = −0.56
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2. Compute Iff(1.00,And(proj(w, Speed), proj(w, a))):

� For all a:

Iff(1.00,−0.56) = min (Implies(1.00,−0.56), Implies(−0.56, 1.00))

Implies(1.00,−0.56) = min(1, 1 − 0.56 − 1.00) = −0.56

Implies(−0.56, 1.00) = min(1, 1 + 1.00 + 0.56) = 1.00

Iff(1.00,−0.56) = min(−0.56, 1.00) = −0.56

Interpreted as False.

Interpretation:

� The equivalence is false across all properties. This reflects that intelligence is not
equivalent to the conjunction of speed and any other property, emphasizing the
negative relationship between intelligence and speed.

Analysis with Weight as Perspective Similarly, we can perform the analysis using
Weight as the perspective vector w. The projections are computed as:

proj(w, x) = k(w, x)

Computed Projections:

� Legs:
proj(w,Legs) = k(Weight,Legs) = 0.54

� Skin Cover:

proj(w, Skin Cover) = k(Weight, Skin Cover) = −0.22

� Weight:
proj(w,Weight) = k(Weight,Weight) = 1.00

� Intelligence:

proj(w, Intelligence) = k(Weight, Intelligence) = 0.76

� Speed:
proj(w, Speed) = k(Weight, Speed) = −0.85
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Formula 1: Weight → a For each property a:

� Legs:
Implies(1.00, 0.54) = min(1, 1 + 0.54 − 1.00) = 0.54

Interpreted as True.

� Skin Cover:

Implies(1.00,−0.22) = min(1, 1 − 0.22 − 1.00) = −0.22

Interpreted as False.

� Weight:
Implies(1.00, 1.00) = min(1, 1 + 1.00 − 1.00) = 1.00

Interpreted as True.

� Intelligence:

Implies(1.00, 0.76) = min(1, 1 + 0.76 − 1.00) = 0.76

Interpreted as True.

� Speed:
Implies(1.00,−0.85) = min(1, 1 − 0.85 − 1.00) = −0.85

Interpreted as False.

Interpretation:

� Legs, Weight, Intelligence: The implication is true, suggesting that higher
weight is associated with these properties.

� Skin Cover, Speed: The implication is false, indicating that higher weight does
not imply these properties.

Formula 2: Legs ∧ a For each property a:

� Legs:
And(0.54, 0.54) = min(0.54, 0.54) = 0.54

Interpreted as True.

� Skin Cover:
And(0.54,−0.22) = min(0.54,−0.22) = −0.22

Interpreted as False.
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� Weight:
And(0.54, 1.00) = min(0.54, 1.00) = 0.54

Interpreted as True.

� Intelligence:
And(0.54, 0.76) = min(0.54, 0.76) = 0.54

Interpreted as True.

� Speed:
And(0.54,−0.85) = min(0.54,−0.85) = −0.85

Interpreted as False.

Interpretation:

� Legs, Weight, Intelligence: The conjunction is true, suggesting a positive asso-
ciation from the perspective of weight.

� Skin Cover, Speed: The conjunction is false due to negative projections.

Formula 3: Weight ↔ (Speed ∧ a) For each property a:

1. Compute And(proj(w, Speed), proj(w, a)):

� Legs:
And(−0.85, 0.54) = min(−0.85, 0.54) = −0.85

� Skin Cover:

And(−0.85,−0.22) = min(−0.85,−0.22) = −0.85

� Weight:
And(−0.85, 1.00) = min(−0.85, 1.00) = −0.85

� Intelligence:

And(−0.85, 0.76) = min(−0.85, 0.76) = −0.85

� Speed:
And(−0.85,−0.85) = min(−0.85,−0.85) = −0.85

2. Compute Iff(1.00,And(proj(w, Speed), proj(w, a))):
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� For all a:

Iff(1.00,−0.85) = min (Implies(1.00,−0.85), Implies(−0.85, 1.00))

Implies(1.00,−0.85) = min(1, 1 − 0.85 − 1.00) = −0.85

Implies(−0.85, 1.00) = min(1, 1 + 1.00 + 0.85) = 1.00

Iff(1.00,−0.85) = min(−0.85, 1.00) = −0.85

Interpreted as False.

Interpretation:

� The equivalence is false across all properties, indicating that weight is not equi-
valent to the conjunction of speed and any other property. This emphasizes the
negative relationship between weight and speed.

8.2 Quantitative truth querying

Suppose that we have defined a semantic space, have a given perspective w. Then we
can form formulas from the element of the semantic space and ask for: How true is the
formula? (−1 = 100 percent false, 0 = Indeterminate, +1 = 100 percent True given the
kernel k and the perspective w.) Here is a toy example:

Let w = 2 and consider the set X = {2, 3, 1
2
}.

The projections of each element in X onto w using the projection function are calcu-
lated as follows:

p2 = proj(w, 2) = 1.0, p3 = proj(w, 3) = 0, p 1
2

= proj

(
w,

1

2

)
= −1.0

We define several logical formulas that operate on these projections:

� Formula 1 : (¬a ∧ (b ∨ c)) → ¬(a ∨ b)

� Formula 2 : (¬a ∧ (b ∨ c)) ∨ ¬(a ∨ b)

� Formula 3 : a ∧ b

� Formula 4 : a ∨ b

Applying these formulas to a = p2, b = p3, and c = p 1
2
, we obtain:

Formula 1 Output : 1,

Formula 2 Output : −1.0,

Formula 3 Output : 0,

Formula 4 Output : 1.0.
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Converting these outputs to truth values:

’T’ for 1,

’F’ for − 1.0,

’I’ for 0,

’T’ for 1.0.

So one might say:
(¬2 ∧ (3 ∨ 1

2
)) → ¬(2 ∨ 3) is a 100 percent true formula (under k and relative to w).

(¬2∧ (3∨ 1
2
))∨¬(2∨ 3) is a 100 percent false formula (under k and relative to w). 2∧ 3

is neither true nor false, hence indeterminate (under k and relative to w). 2∨ 3 ia a 100
percent true formual (under k and relative to w).

One possible semidefinite kernel k for the natural numbers where the formulas above
make sense is given by the kernel k0:

k0(a, b) :=
∑

p|GCD(a,b),p prime

vp(a) · vp(b) (24)

where GCD(a/b, c/d) = gcd(ad,bc)
bd

is the gcd function extended to Q>0 by Scott Beslin
and Grant Boudreaux in the paper ’Extending greatest common divisors across the
rationals’ [1] and vp(n) is the valuation of n to the prime p.

Then the normalized kernel is defined as:

k(a, b) :=
k0(a, b)√

k0(a, a)k0(b, b)
(25)

So this example illustrates how one can query the semantic space of logic for given
formulas and the quantitative truthfulness of the formula.

8.3 Logical consequences of truth voting / beliefs

Suppose one is given a finite set X = {x1, · · · , xn} of everyday sentences, which one can
argue about if they are true or not. Suppose further that some kind of voting is being
done to determine the truthfulness of xi: either true yi := +1 or false yi := −1. As the
last ingredient, we require a positive definite kernel k on X which measure some sort of
similarity between the sentences xi in such a way, that the semantic space S = (X, k) is
separable for the voted Y . Hence there exists a w such that:

sign(k(xi, w)) = yi

(The method to find such a w might be, for example a support vector machines
classifier, and can be easily implemented in python in the module scikit-learn [11] for
instance.)

Now the participants of the voting might be interested, once the truthfulness / beliefs
is voted for and defined, on logical consequences of this definition:
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For instance they might want to know if a given formula F formed by ≡,→,∨,∧,¬
and xi-s, such as for example:
x1 ∧ x2 ∨ (¬(x3 → (x4 ≡ x5)))
is true or not and to what quantitative degree it is true / believed to be true or not.

Here the participants have chosen one w and do not change it any more.
By the example application given above, this can be done using the definitions in the

semantic space.

8.4 Generating sequence of tokens

Let S = (X, k) be a semantic space and x1, x2, · · · , xr be a sequence of elements of X. We
want to be able to express the following idea as a formula: Starting from x1 we deduce
in a sequence of r steps that xr must be true. Therefore we interpret this sequence as
the following formula, which basically says, I start with x1 as being true, then I keep on
adding that from x1 ↔ xi, until we arrive at xr:

F = x1 ∧ (x1 ↔ x2) ∧ (x1 ↔ x3) ∧ . . . ∧ (x1 ↔ xr) (26)

Having this formula F , we can now compute given say the perspective w = x1 how
likely F is:

A negative value indicates that this formula, hence sequence must be false, a value
near 0 indicates that this sequence is neither true nor false, and a value significantly
greater then 0, near 1, indicates that this sequence is true from the w perspective.

This could help with generative models, where one would start with F = x1 and keep
adding x such that F ′ := F ∧ (x1 → x) has the largest value among the x ∈ X.

9 A semantic space of logic on natural numbers

The function k(a, b) = gcd(a,b)2

ab
is a p.d. kernel similarity on the natural numbers. By

the theory of Reproducing Kernel Hilbert space, there exists a Hilbert space H and an
embedding of the natural numbers ϕ : N → H such that:

k(a, b) = ⟨ϕ(a), ϕ(b)⟩

In practice, given finitely many natural number a1, · · · , ar we can compute such an
embedding for those numbers using the Cholesky decomposition of the Gram matrix
G = (k(ai, aj))i,j = CCT and then assigning to ai the i-th column vector of C.

In the given specific case however, we can give a direct embedding for all numbers:
Let ed be the d-th standard-basis vector in the Hilbert space H = l2(N). Let h(n) =

J2(n) be the second Jordan totient function. Define:

ϕ(n) =
1

n

∑
d|n

√
h(d)ed

.
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Then we have:

⟨ϕ(a), ϕ(b)⟩ =
gcd(a, b)2

ab
=: k(a, b)

The vectors ϕ(ai) are linearly independent for each finite set a1, · · · , an of natural
numbers, since

det(Gn) =
n∏

i=1

h(ai)

a2i

is not zero, where Gn denotes the Gram matrix.

10 Satisfiability of formulas in semantic spaces of logic

In everyday logic, when faced with a problem, it helps to change the perspective to solve
the problem. This idea can be made precise in semantic space of logic. Here the word
’problem’ is translated to ’a formula which should be satisfied’ and changing perspective
means ’changing the perspective vector’.

10.1 Problem Formulation

Consider a semantic space S = (X, k), where |X| is finite, and we have a set of formulas
f1, . . . , fr, each involving logical operations such as AND, OR, NOT, IMPLIES, and
IFF, and elements from X. The problem is as follows:
Problem 1: Find a perspective ϕ(w) ∈ H such that, for all i = 1, . . . , r:

µ(fi) ̸= F (False)

In other words, find a perspective w such that all formulas are satisfied as either T
(True) or I (Indeterminate), but none evaluate to F (False).

Stated as above it is easy to find a perspective vector w which evaluates each formula
to I, by chosing w perpendicular (k(w, xi) = 0) to each xi, but this is an impractical
solution, as every formula is evaluated to ’indeterminate’. One might try to add addi-
tional restrictions to this problem, such as trying to maximize the number of formulas
which are evaluated to ’True’. For instance if X = {x} and f1 = x, f2 = ¬x then the
only solution is to find a w perpendicular to x , k(w, x) = 0, and so the two formulas
become ’indeterminate’ evaluated through w. So this problem setting might be useful,
when it is allowed to have contradictory formulas fi, but one wants to satisfy as much of
the remaining formulas as possible while evaluting the contradictions to ’indeterminate’.
Problem 2: Find a perspective ϕ(w) ∈ H such that, for all i = 1, . . . , r:

µ(fi) = T (True)

or conclude that no such perspective vector ϕ(w) exists.
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In other words, find a perspective w such that all formulas are satisfied as T (True),
but none evaluate to F (False) or I (Indeterminate). This problem setting is similar
to the ’Boolean satisfiability problem’, but here, one changes the evaluation of the xi
through a change in the perspective vector w.
Comment: One simple algorithm for the second problem to find a solution where all

the xi have constant truth value say c = k(w, xi) and the Gram matrix is invertible, so
that the kernel is positive definite, is the following method: Suppose f is a formula in
xl. First assume that c is an unknown, which we will determine later, and assume that
w is a placeholder-symbol:

� Let (α1, . . . , αn) := c ·G−1 · (1, . . . , 1)

� Then ∀i = 1, . . . , n: k(w, xi) = c = const.

� Choose one after the other c1 = 0.5, c2 = 0, c3 = −0.5 and accordingly w1, w2, w3

and compute µwj
(f(xl) relwj). If it equals = T then set w := wj, and the second

problem is solvable.

� Otherwise the 2. problem is not solvable for constant c = k(w, xi) as it gives I or
F .

11 Further ideas

This section expands upon some speculative applications and extensions of the semantic
space framework. Initial explorations might focus on:

� Interpreting the kernel function k(w, x) as a measure of correlation, a concept
that requires further investigation, but is immediate, since the Gram matrix G is
symmetric, positive semi-definite, with ones on the diagonal Gx,x = k(x, x) = 1
and −1 ≤ Gx,y = k(x, y) ≤ 1∀x, y ∈ X.

� The application of this framework to SVM classification. In SVM, one typically
defines a semantic space S = (X, k) along with binary labels for elements in X
to find a perspective w that classifies new points x̂ correctly. This methodolo-
gy could enhance the determination of truth values in a semantic vector space,
with perspectives w defined such that they simultaneously satisfy multiple truth
conditions.

� The assignment of the value ’I = indeterminate’ to points x on the SVM hyper-
plane that divides classes, providing a nuanced treatment of boundary cases in
classification.

� Considering elements of the semantic space X as ’atoms’ and True elements as
’axioms’, with formulas defined recursively using logical operators. This structure
allows the exploration of the consequences of various sets of axioms under changes
in perspective.
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� Exploring the possibility of time-varying logic by allowing the perspective vector
w to vary with time t, thereby creating a dynamic logical structure over a static
semantic space S = (X, k).

A semantic space as defined in this note is a finite set X with a symmetric, positive
semi-definite function k : X ×X → R such that:

k(x, x) = 1∀x ∈ X,−1 ≤ k(x, y) ≤ 1∀x, y ∈ X

A correlation matrix R has the following characteristic properties: symmetric, positive
semi-definite, Ri,i = 1∀i = 1, . . . , n, |Ri,j| ≤ 1∀i, j

Thus, we can consider the Gram matrix G = (k(x, y))x,y∈X in a semantic space as
a correlation matrix. This allows us to, consider individual entries Gx,y in the Gram
matrix as correlation values ρx,y := Gx,y and perhaps apply a statistical test which tests
the hypothesis: ρx,y = 0. To apply the test, it must first be clarified how many degrees
of freedom are available, and whether the underlying random variables are pairwise
bivariate normally distributed. The test size with df = m− 2 degrees of freedom, where
m is the ’number of individuals’ would be:

t =
ρx,y√
1−ρ2x,y
m−2

If one is given a positive-definite Gram matrix, then one can perform Cholesky decom-
position or KPCA to obtain vectors ϕ(x), x ∈ X which could be interpreted as random
vectors with the property that:

⟨ϕ(x), ϕ(y)⟩ = k(x, y) = ρx,y

The dimension d of these vectors would then correspond to the number of individuals
m and in Cholesky decomposition or also in KPCA this number would be greatest with
m = n. Thus, the degrees of freedom would be df = n− 2 = |X| − 2.

For every Gram matrix, there can be different vectors that realize this matrix.
The question that arises is, whether there is a method to find the vectors (ϕ(x), ϕ(y))

so that they have pairwise bivariate normally distributed entries. Then one could apply
the t-test from statistics with confidence, without ever having to practically find these
vectors.

12 Proofs

Let H be an RKHS to the kernel k. Let B := {h ∈ H||h| ≤ 1} and for a w with
|ϕ(w)| = 1 let Gw := {tϕ(w)| − 1 ≤ t ≤ 1}.
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12.1 Projection onto the Perspective Vector

Equation (1): For h ∈ H with |h| ≤ 1 we define πw(h) as the projection of h on ϕ(w):

πw(h) := ⟨ϕ(w), h⟩ϕ(w)

This is a mapping πw : B → Gw and we write also h relw := πw(h) = ⟨ϕ(w), h⟩ϕ(w)
For x ∈ X we define πw(x) as the projection of ϕ(x) on ϕ(w) and this becomes with

the reproducing property k(x,w) = ⟨ϕ(x), ϕ(w)⟩ equal to:

πw(x) = ⟨ϕ(w), ϕ(x)⟩ϕ(w) = k(w, x)ϕ(w)

Proof:
In the Hilbert space H, the projection of a vector h onto a vector ϕ(w) is given by:

πw(h) =
⟨ϕ(w), h⟩

⟨ϕ(w), ϕ(w)⟩
ϕ(w)

And because ⟨ϕ(w), ϕ(w)⟩ = k(w,w) = 1, it follows that:

πw(x) = ⟨ϕ(w), h⟩ϕ(w)

This shows that the projection of h onto ϕ(w) is described by the given equation.

12.2 Relative representation of x with respect to w

Equation (2):
For h ∈ H with |h| ≤ 1 we define as above:

h rel(w) := πw(h) = ⟨ϕ(w), h⟩ϕ(w)

For x ∈ X we define:

x rel(w) := ϕ(x) rel(w) = πw(ϕ(x)) = k(w, x)ϕ(w)

Proof:
This is a direct definition based on the previous equation. Since the projection of x

onto w is given by πw(x) = k(w, x)ϕ(w), we define x relative to w precisely as this
projection. (The notation x rel(w) should be thought of as a convenient way of writing
ϕ(x) rel(w).)

12.3 Comment

In what follows, we are going to define functions

□ : Gw ×Gw → Gw

and for convenience we will write:
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h□h′ relw := (h′ relw)□(h′ relw) := · · ·

where · · · will be defined shortly below.
We have the following:

(h relw) relw = h relw

Proof: We have

πw(πw(h)) = ⟨ϕ(w), πw(h)⟩ϕ(w) = ⟨ϕ(w), ⟨ϕ(w), h⟩ϕ(w)⟩ϕ(w) = ⟨ϕ(w), h⟩ϕ(w) = πw(h)

The shortcut notation with □ and this last observation, allows us to write for instance
some formulas like:

(h1 ∧ (¬h2 ∨ h3) → (h4)) relw

without having to write:

((h1(relw) ∧ (¬h2 relw ∨ h3 relw)) relw → (h4 relw) relw) relw

which really is not readable any more.

12.4 Definition of the logical AND operation

Equation (3):
The mapping ∧ is defined as:

∧ : Gw ×Gw → Gw

through

(tϕ(w), t′ϕ(w)) 7→ min(t, t′)ϕ(w)

For h, h′ ∈ B we get, with t = ⟨ϕ(w), h⟩ and t′ = ⟨ϕ(w), h′⟩:

h ∧ h′ rel(w) := h rel(w) ∧ h′ rel(w) = min(⟨ϕ(w), h⟩ , ⟨ϕ(w), h′⟩)ϕ(w)

for x, y ∈ X this becomes (under the identification of x rel(w) = ϕ(x) relw)

x ∧ y rel(w) := min(k(w, x), k(w, y))ϕ(w)

Proof:
This equation defines the logical AND operation in the geometric context. The idea

is that the minimal similarity (given by the kernel) between x and w, as well as y and
w, represents the ’common’ element. Multiplying by ϕ(w) projects the result back into
the Hilbert space in the direction of w.
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12.5 Definition of the logical OR operation

Equation (4):
The mapping ∨ is defined as:

∨ : Gw ×Gw → Gw

through

(tϕ(w), t′ϕ(w)) 7→ max(t, t′)ϕ(w)

For h, h′ ∈ B we get, with t = ⟨ϕ(w), h⟩ and t′ = ⟨ϕ(w), h′⟩:

h ∨ h′ rel(w) := h rel(w) ∧ h′ rel(w) := max(⟨ϕ(w), h⟩ , ⟨ϕ(w), h′⟩)ϕ(w)

for x, y ∈ X this becomes (under the identification of x rel(w) = ϕ(x) relw)

x ∨ y rel(w) := max(k(w, x), k(w, y))ϕ(w)

12.6 Definition of negation

Equation (5):
The negation ¬ is defined as:

¬ : Gw → Gw

through:

tϕ(w) 7→ −tϕ(w)

for h ∈ B we get with t = ⟨ϕ(w), h⟩ the following:

¬(h relw) = (−h) relw

For x ∈ X this becomes:

¬x = −πw(x) = −k(w, x)ϕ(w) = −(x relw)

Proof:
The negation of a vector x is defined by reflecting its projection across the origin.

Since πw(x) = k(w, x)ϕ(w), the negation is simply −k(w, x)ϕ(w).
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12.7 Definition of implication

Equation (6):
The implication is defined as

→: Gw ×Gw → Gw

through:

tϕ(w) → t′ϕ(w) := min(1, 1 + t′ − t)ϕ(w)

For x, y ∈ X, this becomes:

x→ y rel(w) := min(1, 1 + k(w, y) − k(w, x))ϕ(w)

Comment:
In  Lukasiewicz logic, the implication x → y is defined by min(1, 1 − v(x) + v(y)),

where v(x) is the truth value of x. In the geometric context, v(x) corresponds to the
inner product k(w, x). Therefore, we obtain the given equation.

12.8 Definition of equivalence

Equation (7):
The equivalence is defined as

↔: Gw ×Gw → Gw

through:

tϕ(w) ↔ t′ϕ(w) := (tϕ(w) → t′ϕ(w)) ∧ (t′ϕ(w) → tϕ(w))

For x, y ∈ X this becomes:

x↔ y rel(w) := (x→ y) ∧ (y → x) rel(w)

Comment:
Logical equivalence is traditionally defined as a combination of two implications. Here,

this is geometrically implemented by computing both implications and then taking the
minimal similarity (see the AND operation).

12.9 De Morgan’s laws

For x, y ∈ X we have:
Equation (8):

(¬x) ∧ (¬y) = ¬(x ∨ y) rel (w)

Equation (9):
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(¬x) ∨ (¬y) = ¬(x ∧ y) rel (w)

Proof:
We demonstrate this exemplarily for Equation (8):
Left-hand side:

(¬x) ∧ (¬y) = min(k(w,¬x), k(w,¬y))ϕ(w)

Since ¬x = −πw(x) and k(w,¬x) = ⟨ϕ(w),−πw(x)⟩ = −⟨ϕ(w), πw(x)⟩ = −k(w, x), it
follows that:

(¬x) ∧ (¬y) = min(−k(w, x),−k(w, y))ϕ(w) = −max(k(w, x), k(w, y))ϕ(w)

Right-hand side:

¬(x ∨ y) = −(max(k(w, x), k(w, y))ϕ(w)) = −max(k(w, x), k(w, y))ϕ(w)

Thus, the left-hand and right-hand sides are equal.
The proof for Equation (9) proceeds analogously.

12.10 Double negation

Equation (10): For all x ∈ X:

¬(¬x) = x rel(w)

Proof:
Calculating the double negation:

¬(¬x) = −πw(¬x) = −k(w,¬x)ϕ(w)

Since k(w,¬x) = −k(w, x), it follows that:

¬(¬x) = −(−k(w, x)ϕ(w)) = k(w, x)ϕ(w) = πw(x)

Since πw(x) = x relw, the equation holds.

12.11 Contraposition

Equation (11): For all x, y ∈ X:

x→ y rel(w) = (¬y) → (¬x) rel(w)

Proof:
We show that both sides are identical:
Calculating the left-hand side:
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x→ y rel(w) = min(1, 1 + k(w, y) − k(w, x))ϕ(w)

Calculating the right-hand side:

(¬y) → (¬x) = min(1, 1 + k(w,¬x) − k(w,¬y))ϕ(w)

Since k(w,¬x) = −k(w, x), we have:

k(w,¬x) = −k(w, x) and k(w,¬y) = −k(w, y)

and we get:

min(1, 1 + k(w,¬x) − k(w,¬y))ϕ(w) = min(1, 1 − k(w, x) − (−k(w, y)))ϕ(w)

which is equal to

min(1, 1 + k(w, y) − k(w, x))ϕ(w) = x→ y rel(w)

Thus, both expressions are identical, and the equation is proven.

12.12 Definition of truth assignment

Equation (12): For all (h relw) ∈ Gw, we have:

µ(h relw) =


T if ⟨ϕ(w), h⟩ > 0,

I if ⟨ϕ(w), h⟩ = 0,

F if ⟨ϕ(w), h⟩ < 0.

Proof:
This is translates the value of the inner product ⟨ϕ(w), h⟩ into a truth value. It is

a definition within the model and does not require further proof, but a comment: For
h = x relw = πw(x) we get ⟨ϕ(w), h⟩ = k(w, x), so the truth value of elements of x ∈ X
depends on the kernel value k(w, x) of x with the perspective w.

12.13 Modus ponens

Equation (13):

If µ(x relw) = T and µ(x→ y relw) = T, then µ((x ∧ (x→ y)) → y relw) = T

Proof:
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Given:

� µ(x relw) = T :

This means that the inner product ⟨ϕ(w), x relw⟩ > 0.

� µ(x→ y relw) = T :

This means that ⟨ϕ(w), x→ y relw⟩ > 0.

Our Goal

Show that µ ((x ∧ (x→ y)) → y relw) = T , i.e., the inner product ⟨ϕ(w), (x ∧ (x→ y)) →
y relw⟩ > 0.

Step 1: Understand the Given Conditions

From the definitions:

x relw = k(w, x)ϕ(w)

x→ y relw = vϕ(w), where v = min (1, 1 + k(w, y) − k(w, x))

Given that µ(x relw) = T , we have:

⟨ϕ(w), x relw⟩ = k(w, x) > 0

So, k(w, x) = s > 0.
Given that µ(x→ y relw) = T , we have:

⟨ϕ(w), x→ y relw⟩ = v > 0

Where:

v = min (1, 1 + k(w, y) − k(w, x)) = min (1, 1 + r − s)

Let k(w, y) = r.
Since v > 0, it follows that:

1 + r − s > 0 =⇒ r > s− 1

Step 2: Compute x ∧ (x→ y) relw

From the definition of logical AND:

x ∧ (x→ y) relw = min (k(w, x), v)ϕ(w) = min (s, v)ϕ(w)

Let:
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t = min (s, v)

So:

x ∧ (x→ y) relw = tϕ(w)

Since both s > 0 and v > 0, it follows that t > 0.

Step 3: Compute (x ∧ (x→ y)) → y relw

From the definition of implication:

(x ∧ (x→ y)) → y relw = min (1, 1 + k(w, y) − t)ϕ(w) = min (1, 1 + r − t)ϕ(w)

We need to show that:

⟨ϕ(w), (x ∧ (x→ y)) → y relw⟩ > 0

Compute the inner product:

⟨ϕ(w), (x ∧ (x→ y)) → y relw⟩ = min (1, 1 + r − t)

Step 4: Show that min (1, 1 + r − t) > 0

Since t = min (s, v), t ≤ s and t ≤ v.
Given that s > 0 and v > 0, t > 0.
Case 1: If t = s

1 + r − t = 1 + r − s

Since v = min (1, 1 + r − s) and v > 0, it implies 1 + r − s > 0.
Thus:

1 + r − t = 1 + r − s > 0

Case 2: If t = v
Then t ≤ v ≤ 1, and since v = 1 + r − s ≤ 1, 1 + r − s ≤ 1.
So:

1 + r − t ≥ 1 + r − v = 1 + r − (1 + r − s) = s > 0
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Conclusion

In both cases, 1 + r − t > 0. Therefore:

⟨ϕ(w), (x ∧ (x→ y)) → y relw⟩ = min (1, 1 + r − t) > 0

So:

µ ((x ∧ (x→ y)) → y relw) = T

13 Appendix, Sagemath / Python code� �
1 def kk0(a,b):

2 return min(a,b)/max(a,b)

3

4 def kk1(a,b):

5 return gcd(a,b)**2/(a*b)

6

7 def kk2(a,b):

8 return sign(gcd(a,b))*sigma(gcd(a,b))/(sign(a)*sigma(a)*sign(b)*

sigma(b))

9

10 def kkL(a,b):

11 return a.dot_product(b)/(a.dot_product(a)*b.dot_product(b))

12

13 def mu(x):

14 return sign(x)

15

16 def proj(w,x):

17 return kk(w,x)

18

19 def And(x,y):

20 return min(x,y)

21

22 def Or(x,y):

23 return max(x,y)

24

25 def Implies(x,y):

26 return And(1,1+y-x)

27

28 def Iff(x,y):

29 return And(Implies(x,y),Implies(y,x))

30

31 def Not(x):

32 return -x

33

34 def gram(rr):

35 return matrix ([[kk(a,b) for a in rr] for b in rr])

36

37
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38 def Table(func ,w,rr ,printMu = True):

39 if printMu:

40 return matrix ([[mu(func(proj(w,x),proj(w,y))) for x in rr] for

y in rr])

41 else:

42 return matrix ([[ func(proj(w,x),proj(w,y)) for x in rr] for y in

rr])

43

44 def deMorgan(w,rr):

45 one = all([And(Not(proj(w,x)),Not(proj(w,y)))==Not(Or(proj(w,x),

proj(w,y))) for x in rr for y in rr])

46 two = all([Or(Not(proj(w,x)),Not(proj(w,y)))==Not(And(proj(w,x),

proj(w,y))) for x in rr for y in rr])

47 return one and two

48

49 def contraposition(w,rr):

50 return all([ Implies(proj(w,x),proj(w,y))== Implies(Not(proj(w,y)),

Not(proj(w,x))) for x in rr for y in rr])

51

52 def doubleNegation(w,rr):

53 return all([proj(w,x)==Not(Not(proj(w,x))) for x in rr])

54

55 def modusPonens(w,rr):

56 return all([mu(Implies(And(proj(w,a),Implies(proj(w,a),proj(w,b))),

proj(w,b)))==1 for a in rr for b in rr if mu(proj(w,a))==1 and

mu(Implies(proj(w,a),proj(w,b)))==1])

57

58

59

60

61 # Number logic:

62 #rr = [1,2,3,4,5,6]

63 #w = 1

64 #kk = kk2

65

66 # Number log -logic:

67 def kkl(a,b):

68 x = sum([ valuation(a,p)*valuation(b,p) for p in prime_divisors(gcd(

a,b))])

69 y1 = sqrt(sum([ valuation(a,p)**2 for p in prime_divisors(a)]))

70 y2 = sqrt(sum([ valuation(b,p)**2 for p in prime_divisors(b)]))

71 return x/(y1*y2)

72

73

74 rr = [1/3 ,1/2 ,2 ,3]

75 ww = [2,3]

76 kk = kkl

77

78 # Simplex logic:

79 def ee(n,N):

80 return vector ([1*(k==n) for k in range(1,N+1)])

81
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82 N=3

83 rr = [ee(n,N) for n in range(1,N+1)]

84 v = 1/N*sum(rr)

85 w = v*1/v.norm()

86 rr.extend([-ee(n,N) for n in range(1,N+1)])

87

88 ww = [w]

89 kk = kkL

90

91 # Lukasiewicz logic:

92 e1 = vector ([1 ,0])

93 e0 = vector ([0 ,1])

94

95 rr = [-e1 ,e0 ,e1]

96 ww = [e0,e1 ,-e1]

97 kk = kkL

98

99

100 print(latex(gram(rr)))

101

102 def checks(w,rr):

103

104 pm = False

105 print("deMorgan -Rules are satisfied:")

106 print(deMorgan(w,rr))

107

108 print("contraposition satisfied:")

109 print(contraposition(w,rr))

110

111 print("doubleNegation:")

112 print(doubleNegation(w,rr))

113

114 print("modusPonens:")

115 print(modusPonens(w,rr))

116

117 print("Not")

118 for x in rr:

119 print(proj(w,x),Not(proj(w,x)))

120 #print(mu(proj(w,x)), mu(Not(proj(w,x))))

121

122 print("And")

123 print(latex(Table(And ,w,rr,printMu=pm)))

124

125 print("Or")

126 print(latex(Table(Or,w,rr,printMu=pm)))

127

128 print("Implies")

129 print(latex(Table(Implies ,w,rr,printMu=pm)))

130

131 print("Iff")

132 print(latex(Table(Iff ,w,rr,printMu=pm)))

133
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134

135 for w in ww:

136 print("w = ",latex(w))

137 checks(w,rr)

138 #for n in range (1,21):

139 # rr = list(range(-n,0))

140 # rr.extend(range(1,n+1))

141 # print(n,rr)

142 # print(gram(rr).rank())� �
For the groups computation, the following code is used:� �

1 groups60 = [

2 ([’()’],’group_id_1 -1’),

3 ([’(1,2)’],’group_id_2 -1’),

4 ([’(1,2,3)’],’group_id_3 -1’),

5 ([’(1,2,3,4)’],’group_id_4 -1’),

6 ([’(3,4)’, ’(1,2)’],’group_id_4 -2’),

7 ([’(1,2,3,4,5)’],’group_id_5 -1’),

8 ([’(1,2)(3,6)(4,5)’, ’(1,3,5)(2,4,6)’],’group_id_6 -1’),

9 ([’(3,4,5)’, ’(1,2)’],’group_id_6 -2’),

10 ([’(1,2,3,4,5,6,7)’],’group_id_7 -1’),

11 ([’(1,2,3,4,5,6,7,8)’],’group_id_8 -1’),

12 ([’(3,4,5,6)’, ’(1,2)’],’group_id_8 -2’)]

13

14 def inv(perm):

15 n = len(perm)

16 return set ([(i,j) for i in range(1,n+1) for j in range(1,n+1) if i

< j and perm[i-1]>perm[j -1]])

17

18 def lt(p1 ,p2):

19 return inv(p1).issubset(inv(p2))

20

21

22

23 def regularPermutationsInSymmetricGroup(finiteGroup):

24 from sage.matrix.operation_table import OperationTable

25 G = finiteGroup

26 O = OperationTable(G,operator.mul ,names="elements")

27 #print(latex(O.table ()))

28 ll = [ Permutation ([xx +1 for xx in x]) for x in O.table()]

29 return ll

30

31

32 def embeddInMatrixSpace(sigma ,normalized=True ,floatIt=True):

33 """ sigma = Permutation """

34 n = len(sigma)

35 m = matrix ([[0 if not floatIt else float (0.0) for i in range(n)]

for j in range(n)])

36 for i in range(n):

37 for j in range(n):

38 m[i,j] = 1*( sigma(i+1)>sigma(j+1)) -1*(sigma(i+1)<sigma(j+1)

)
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39 if normalized:

40 return 1/sqrt(n*(n-1))*m if not floatIt else float (1/ sqrt(n*(n

-1)))*m

41 else:

42 return m

43

44 def kk(p1 ,p2):

45 m1 = embeddInMatrixSpace(p1 ,normalized=True ,floatIt=True)

46 m2 = embeddInMatrixSpace(p2 ,normalized=True ,floatIt=True)

47 return (m1*m2.transpose ()).trace()

48

49 def grammat(group):

50 perms = regularPermutationsInSymmetricGroup(group)

51 return matrix ([[kk(p1 ,p2) for p1 in perms] for p2 in perms])

52

53 def mu(x):

54 return sign(x)

55

56 def proj(w, x):

57 return kk(w, x)

58

59 def And(x, y):

60 return min(x, y)

61

62 def Or(x, y):

63 return max(x, y)

64

65 def Implies(x, y):

66 return min(1, 1 + y - x)

67

68 def Iff(x, y):

69 return min(Implies(x, y), Implies(y, x))

70

71 def Not(x):

72 return -x

73

74 # Table function

75 def Table(func , w, perms ,showTruthValues=False ,wIsAlreadyVector=False):

76 table = []

77 n = len(perms)

78 for y in perms:

79 row = []

80 for x in perms:

81 if not wIsAlreadyVector:

82 value = func(proj(w, x), proj(w, y))

83 else:

84 vX = embeddInMatrixSpace(x,normalized=True ,floatIt=True

)

85 vY = embeddInMatrixSpace(y,normalized=True ,floatIt=True

)

86 #print(x,vX)

87 #print(y,vY)
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88 value = func(( matrix(w)*vX.transpose ()).trace () ,(matrix

(w)*vY.transpose ()).trace ())

89 truth_value = (value)

90 if (truth_value) > 10** -3 and showTruthValues:

91 row.append(’T’)

92 elif (truth_value) < -10**-3 and showTruthValues:

93 row.append(’F’)

94 elif showTruthValues:

95 row.append(’I’)

96 elif not showTruthValues:

97 row.append(value)

98 table.append(row)

99 return table

100

101

102

103 numberOfObservedGroups =7

104 for gens ,name in groups60 [1: numberOfObservedGroups ]:

105

106 group = PermutationGroup(gens)

107 #criteria = (group.order ()==8 and group.is_elementary_abelian ())

108 #criteria = group.order ()==3

109 criteria = group.order ()==4 and group.is_cyclic ()

110 #criteria = group.order ()==2

111 if not criteria :

112 continue

113 print(name)

114 K = grammat(group)

115

116 perms = regularPermutationsInSymmetricGroup(group)

117

118 elements = list(group)

119 perm_dict = dict(zip(elements , perms))

120

121 # Compute the Gram matrix

122 print("Gram Matrix K:")

123 print(K)

124

125 continue

126

127 # Perspectives

128 perspectives = [x for x in elements]

129

130

131 # Logical Operations

132 operations = {’AND’: And , ’OR’: Or, ’IMPLIES ’: Implies , ’IFF’: Iff}

133

134 # Compute and display tables for each perspective

135 for w_label in perspectives:

136 w = perm_dict[w_label]

137 print(f"\nPerspective w = {w_label}")

138 print("truth values of vectors:")
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139 for x in perms:

140 val = (proj(w,x))

141 print(x, "= w" if w==x else " ", "F" if val < -10**-3

else "T" if val > 10** -3 else "I")

142 #print(x, "= w" if w==x else " ", val)

143 showTruthValues = True

144 for op_name , op_func in operations.items():

145 table = Table(op_func , w, perms ,showTruthValues=

showTruthValues)

146 print(f"\nTruth Table for {op_name} (Perspective w = {

w_label }):")

147 print(’ ’ * 5 + ’ ’.join([str(e).rjust (5) for e in elements

]))

148 for e_row , row in zip(elements , table):

149 if not showTruthValues:

150 print(str(e_row).rjust (5) + ’ ’.join([str(round(val

,3)).rjust (5) for val in row]))

151 else:

152 print(str(e_row).rjust (5) + ’ ’.join([str(val).

rjust (5) for val in row]))� �
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